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 Elasticity, in its linear form, is the simplest model 
applied to continuum systems

 Elasticity is the most successful constitutive model 
and is responsible for the built environment: Eiffel 
Tower, Skyscrapers, Bridges, etc

 Many, if not most of the problems arising from the 
linear theory can be solved in closed form or 
numerically using the modern commercial software 
such as FEA packages.

Purpose of the Course
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 The slides here are quite extensive. They are meant to 
assist the serious learner. They are NO SUBSTITUTES 
for the course text which must be read and followed 
concurrently.

 Preparation by reading ahead is ABSOLUTELY
necessary to follow this course

 Assignments are given at the end of each class and 
they are due (No excuses) exactly five days later. 

 Late submission carry zero grade.

What you will need
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Scope of Instructional Material
Course Schedule:

The read-ahead materials are from Gurtin except the 
part marked red. There please read Holzapfel. Home 
work assignments will be drawn from the range of 
pages in the respective books.

Slide Title Slides
We
eks Text

Read 
Pages

Governing Equations and Global Charts 80 2 Heinfokel 1-8

Constitutive Models ( Linear Elasticity) 110 3 Gurtin 9-37

Nonlinear Models 119 3 Gurtin 39-57

Solutions for Linear Elastic Solids 106 3 Gurtin 59-123

Solutions for Hyper-Elasticity
43 1 Holz

109-
129



The only remedy for late submission is that you fight for 
the rest of your grade in the final exam if your excuse is 
considered to be genuine. Ordinarily, the following will 
hold:
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Examination

Evaluation Obtainable

Quiz 10

Homework 50

Midterm 20

Exam 20

Total 100



 This course was prepared with several textbooks and 
papers. They will be listed below. However, the main 
course text is: Gurtin ME, Fried E & Anand L, The 
Mechanics and Thermodynamics of Continua, 
Cambridge University Press, www.cambridge.org
2010

 The course will cover pp1-240 of the book. You can 
view the course as a way to assist your reading and 
understanding of this book

 The specific pages to be read each week are given 
ahead of time. It is a waste of time to come to class 
without the preparation of reading ahead.

 This preparation requires going through the slides 
and the area in the course text that will be covered.

Course Texts
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 The software for the Course is Mathematica 9 by 
Wolfram Research. Each student is entitled to a 
licensed copy. Find out from the LG Laboratory

 It your duty to learn to use it. Students will find some 
examples too laborious to execute by manual 
computation. It is a good idea to start learning 
Mathematica ahead of your need of it.

 For later courses, commercial FEA Simulations 
package such as ANSYS, COMSOL or NASTRAN will be 
needed. Student editions of some of these are 
available. We have COMSOL in the LG Laboratory

Software
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 Gurtin, ME, Fried, E & Anand, L, The Mechanics and 
Thermodynamics of Continua, Cambridge University Press, 
www.cambridge.org 2010

 Bertram, A, Elasticity and Plasticity of Large 
Deformations, Springer-Verlag Berlin Heidelberg, 2008 

 Tadmore, E, Miller, R & Elliott, R, Continuum Mechanics 
and Thermodynamics From Fundamental Concepts to 
Governing Equations, Cambridge University Press, 
www.cambridge.org , 2012

 Nagahban, M, The Mechanical and Thermodynamical
Theory of Plasticity, CRC Press, Taylor and Francis Group, 
June 2012

 Heinbockel, JH, Introduction to Tensor Calculus and 
Continuum Mechanics, Trafford, 2003

Texts
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 Bower, AF, Applied Mechanics of Solids, CRC Press, 2010
 Taber, LA, Nonlinear Theory of Elasticity, World Scientific, 

2008
 Ogden, RW, Nonlinear Elastic Deformations, Dover 

Publications, Inc. NY, 1997
 Humphrey, JD, Cadiovascular Solid Mechanics: Cells, 

Tissues and Organs, Springer-Verlag, NY, 2002
 Holzapfel, GA, Nonlinear Solid Mechanics, Wiley NY, 2007
 McConnell, AJ, Applications of Tensor Analysis, Dover 

Publications, NY 1951
 Gibbs, JW “A Method of Geometrical Representation of 

the Thermodynamic Properties of Substances by Means 
of Surfaces,” Transactions of the Connecticut Academy of 
Arts and Sciences 2, Dec. 1873, pp. 382-404.

Texts
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 Romano, A, Lancellotta, R, & Marasco A, Continuum 
Mechanics using Mathematica, Fundamentals, 
Applications and Scientific Computing, Modeling and 
Simulation in Science and Technology, Birkhauser, Boston 
2006

 Reddy, JN, Principles of Continuum Mechanics, Cambridge 
University Press, www.cambridge.org 2012

 Brannon, RM, Functional and Structured Tensor Analysis 
for Engineers, UNM BOOK DRAFT, 2006, pp 177-184.

 Atluri, SN, Alternative Stress and Conjugate Strain 
Measures, and Mixed Variational Formulations Involving 
Rigid Rotations, for Computational Analysis of Finitely 
Deformed Solids with Application to Plates and Shells, 
Computers and Structures, Vol. 18, No 1, 1984, pp 93-116

Texts
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 Wang, CC, A New Representation Theorem for Isotropic 
Functions: An Answer to Professor G. F. Smith's Criticism 
of my Papers on Representations for Isotropic Functions 
Part 1. Scalar-Valued Isotropic Functions, Archives of 
Rational Mechanics, 1969 pp

 Dill, EH, Continuum Mechanics, Elasticity, Plasticity, 
Viscoelasticity, CRC Press, 2007

 Bonet J & Wood, RD, Nonlinear Mechanics for Finite 
Element Analysis, Cambridge University Press, 
www.cambridge.org 2008

 Wenger, J & Haddow, JB, Introduction to Continuum 
Mechanics & Thermodynamics, Cambridge University 
Press, www.cambridge.org 2010
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Texts
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 Li, S & Wang G, Introduction to Micromechanics and 
Nanomechanics, World Scientific, 2008

 Wolfram, S The Mathematica Book, 5th Edition 
Wolgram Media 2003

 Trott, M, The Mathematica Guidebook, 4 volumes: 
Symbolics, Numerics, Graphics &Programming, 
Springer 2000

 Sokolnikoff, IS, Tensor Analysis, Theory and 
Applications to Geometry and Mechanics of 
Continua, John Wiley, 1964
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Texts



Linear Theory of Elasticity
Introduction



 In our previous work, we looked at a continuously 
distributed material occupying a region of space. 
When such a body is subjected to deformations or 
motion, we call the original placement in the 
Euclidean Point Space the “Reference State”

 At any point in time, we observe placements that are 
generally functions of time in the sense that a new 
placement can be physically observed at a particular 
time. These are, as we know, called Spatial 
Placements.
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Reference & Spatial Placement



 The spatial placement can be any arbitrary 
deformation of the Reference Placement. In general, 
the Deformation Gradient defines the change 
between the reference placement and the spatial.

 When deformations are such that the shape changes 
between the spatial and reference placements are 
not large, it is convenient to introduce another 
variable called the displacement.
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Small Deformations



The vector quantity,
𝐮 𝐗, 𝑡 = 𝝌 𝐗, 𝑡 − 𝐗

which is a function of the reference point 𝐗 is called the 
displacement. It is the displacement of the material point 𝐗 at 
time 𝑡. 
Recall that the Green-St Venant strain tensor is defined as, 

𝐄 =
1

2
𝐂 − 𝟏

=
1

2
𝐅𝐓𝐅 − 𝟏

Now 
𝐅 = Grad 𝛘(𝐗, 𝑡)

and taking the reference gradient of the relation,
𝐮 𝐗, 𝑡 = 𝝌 𝐗, 𝑡 − 𝐗
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Displacement Gradient



we can write,
Grad 𝐮 𝐗, 𝑡 = Grad 𝛘 𝐗, 𝑡 − Grad 𝐗

= Grad 𝛘 𝐗, 𝑡 − 𝟏
= 𝐅 − 𝟏

Define 𝐇 as the deformation gradient, we have that
𝐇 ≡ Grad 𝐮 𝐗, 𝑡

so that,
𝐇 = 𝐅 − 𝟏
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Small Deformations



Clearly,

𝐄 =
1

2
𝐅𝐓𝐅 − 𝟏

=
1

2
𝐇𝐓 + 𝟏 𝐇 + 𝟏 − 𝟏

=
1

2
𝐇𝐓 + 𝐇 + 𝐇𝐓𝐇

In the limit that 𝐇 → 𝟎, we have small deformations. Here, 
we can write that 

𝐅 = 𝟏 + 𝐨(𝐇)

For arbitrary deformation, we can write, The Green-St Venant
Strain Tensor in covariant components as,

𝐸𝑖𝑗 =
1

2
𝑢𝑗 ,𝑖 +𝑢𝑖 ,𝑗 +𝑢𝑘 ,𝑗 𝑢𝑘 ,𝑖
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Small Deformations



so that products of 𝐇 tend to zero faster than 𝐇 and we 
can approximate the Green-St Venant strain by 

1

2
𝐇𝐓 + 𝐇

This quantity, which coincides with the value of Eulerian
strain, is called infinitesimal strain.

In this case, we see that the deformation gradient is 
close to the identity tensor. The deformed state of the 
material is almost coincident with the undeformed state 
up to a rigid body motion.
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Small Deformations



Given the displacement vector in covariant 
components, we may write,

𝐮 𝐗, 𝑡 = 𝐮 = 𝑢𝑖𝐠
𝑖

grad 𝐮 = 𝑢𝑖 ,𝑗 𝐠𝑖 ⊗ 𝐠𝑗

Where 𝑢𝑖 ,𝑗 is the covariant derivative of the 
displacement. The infinitesimal strain is therefore,

𝛆 =
1

2
𝑢𝑖 ,𝑗 +𝑢𝑗 ,𝑖 𝐠𝑖 ⊗ 𝐠𝑗
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Strain-Displacement Relationships



𝐸𝑖𝑗 =
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝑘

𝜕𝑥𝑗

or 

𝐸𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
+

1

2

𝜕𝑢𝑥

𝜕𝑥

2

+
𝜕𝑢𝑦

𝜕𝑥

2

+
𝜕𝑢𝑧

𝜕𝑥

2

𝐸𝑦𝑦 =
𝜕𝑢𝑦

𝜕𝑦
+

1

2

𝜕𝑢𝑥

𝜕𝑦

2

+
𝜕𝑢𝑦

𝜕𝑦

2

+
𝜕𝑢𝑧

𝜕𝑦

2

𝐸𝑧𝑧 =
𝜕𝑢𝑧

𝜕𝑧
+

1

2

𝜕𝑢𝑥

𝜕𝑧

2

+
𝜕𝑢𝑦

𝜕𝑧

2

+
𝜕𝑢𝑧

𝜕𝑧

2

𝐸𝑥𝑦 = 𝐸𝑦𝑥 =
1

2

𝜕𝑢𝑥

𝜕𝑥
+ 1

𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑦
+ 1 +

𝜕𝑢𝑧

𝜕𝑥

𝜕𝑢𝑧

𝜕𝑦

𝐸𝑥𝑧 = 𝐸𝑧𝑥 =
1

2

𝜕𝑢𝑥

𝜕𝑥
+ 1

𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥

𝜕𝑢𝑧

𝜕𝑧
+ 1

𝐸𝑦𝑧 = 𝐸𝑧𝑦 =
1

2

𝜕𝑢𝑥

𝜕𝑦

𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑦

𝜕𝑦
+ 1

𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦

𝜕𝑢𝑧

𝜕𝑧
+ 1
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Cartesian



Removing all the product terms arising from the contraction of the 

displacement gradient, we have 𝜀𝑖𝑗 =
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗 +
𝜕𝑢𝑗

𝜕𝑥𝑖

or 

𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥

𝜀𝑦𝑦 =
𝜕𝑢𝑦

𝜕𝑦

𝜀𝑧𝑧 =
𝜕𝑢𝑧

𝜕𝑧

𝜀𝑥𝑦 = 𝐸𝑦𝑥 =
1

2

𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥

𝜀𝑥𝑧 = 𝐸𝑧𝑥 =
1

2

𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥

𝜀𝑦𝑧 = 𝐸𝑧𝑦 =
1

2

𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
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Small Strains



 In Cylindrical Polar coordinates, as in other curvilinear systems the Christoffel
symbols summation portion of the covariant derivatives add several additional 
terms as shown in the following expressions.

 𝐸𝑟𝑟 =
𝜕𝑢𝑟

𝜕𝑟
+

1

2

𝜕𝑢𝑧

𝜕𝑟

2
+

𝜕𝑢𝜃

𝜕𝑟

2
+

𝜕𝑢𝑟

𝜕𝑟

2

𝐸𝜃𝜃

=
1

2𝑟2  𝑢𝑟
2 + 2𝑟𝑢𝑟 + 𝑢𝜃

2 +
𝜕𝑢𝑟

𝜕𝜃

2

+
𝜕𝑢𝑧

𝜕𝜃

2

+
𝜕𝑢𝜃

𝜕𝜃

2

− 2𝑢𝜃

𝜕𝑢𝑟

𝜕𝜃
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Cylindrical Coordinates



In spherical coordinates, the components of Lagrangian Strain are,

𝐸𝜌𝜌 =
𝜕𝑢𝜌

𝜕𝜌
+

1

2

𝜕𝑢𝜃

𝜕𝜌

2

+
𝜕𝑢𝜌

𝜕𝜌

2

+
𝜕𝑢𝜙

𝜕𝜌

2

𝐸𝜃𝜃 =
1

𝜌

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝜌

𝜌
+

1

2𝜌2
𝑢𝜃

2 − 2𝑢𝜃

𝜕𝑢𝜌

𝜕𝜃
+ 2𝑢𝜌

𝜕𝑢𝜃

𝜕𝜃
+

𝜕𝑢𝜃

𝜕𝜃

2

+ 𝑢𝜌
2 +

𝜕𝑢𝜌

𝜕𝜃

2

+
𝜕𝑢𝜙

𝜕𝜃

2

𝐸𝜙𝜙

=
𝑢𝜃 cot 𝜃

𝜌
+

𝑢𝜌

𝜌
+

1

𝜌 sin 𝜃

𝜕𝑢𝜙

𝜕𝜙

+
1

2𝜌2 𝑠𝑖𝑛2 𝜃
𝑢𝜃 cos 𝜃 + 𝑢𝜌 sin 𝜃 +

𝜕𝑢𝜙

𝜕𝜙

2

+
𝜕𝑢𝜃

𝜕𝜙
− 𝑢𝜙 cos 𝜃

2

+
𝜕𝑢𝜌

𝜕𝜙
− 𝑢𝜙 sin 𝜃

2

𝐸𝜌𝜃 = 𝐸𝜃𝜌 =
1

2𝜌
𝜌
𝜕𝑢𝜃

𝜕𝜌
− 𝑢𝜃 +

𝜕𝑢𝜌

𝜕𝜃
+

𝜕𝑢𝜃

𝜕𝜌

𝜕𝑢𝜃

𝜕𝜃
+ 𝑢𝜌 +

𝜕𝑢𝜌

𝜕𝜌

𝜕𝑢𝜌

𝜕𝜃
− 𝑢𝜃 +

𝜕𝑢𝜙

𝜕𝜃

𝜕𝑢𝜙

𝜕𝜌

𝐸𝜌𝜙 = 𝐸𝜙𝜌

=
1

2𝜌

1

sin 𝜃

𝜕𝑢𝜌

𝜕𝜙
+ 𝜌

𝜕𝑢𝜙

𝜕𝜌
− 𝑢𝜙 +

𝜕𝑢𝜙

𝜕𝜌
𝑢𝜃 cot 𝜃 + 𝑢𝜌 +

1

sin 𝜃

𝜕𝑢𝜙

𝜕𝜙
+

𝜕𝑢𝜃

𝜕𝜌

1

sin 𝜃

𝜕𝑢𝜃

𝜕𝜙
− 𝑢𝜙 cot 𝜃 +

𝜕𝑢𝜌

𝜕𝜌

1

sin 𝜃

𝜕𝑢𝜌

𝜕𝜙
− 𝑢𝜙

𝐸𝜃𝜙 = 𝐸𝜙𝜃

=
1

2𝜌
 

1

sin 𝜃

𝜕𝑢𝜃

𝜕𝜙
− 𝑢𝜙cot(𝜃) +

𝜕𝑢𝜙

𝜕𝜃
+

𝜕𝑢𝜙

𝜕𝜌
𝑢𝜃cot(𝜃) + 𝑢𝜌 +

1

sin 𝜃

𝜕𝑢𝜙

𝜕𝜙
+

𝜕𝑢𝜃

𝜕𝜌

1

sin 𝜃

𝜕𝑢𝜃

𝜕𝜙
− 𝑢𝜙cot(𝜃)
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Cylindrical

𝜕𝑢𝑟

𝜕𝑟

−𝑢𝜃 +
𝜕𝑢𝑟
𝜕𝜃

+ 𝑟
𝜕𝑢𝜃
𝜕𝑟

2𝑟

1

2

𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟

−𝑢𝜃 +
𝜕𝑢𝑟
𝜕𝜃

+ 𝑟
𝜕𝑢𝜃
𝜕𝑟

2𝑟

𝑢𝑟 +
𝜕𝑢𝜃
𝜕𝜃

𝑟

𝜕𝑢𝑧
𝜕𝜃

+ 𝑟
𝜕𝑢𝜃
𝜕𝑧

2𝑟

1

2

𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟

𝜕𝑢𝑧
𝜕𝜃

+ 𝑟
𝜕𝑢𝜃
𝜕𝑧

2𝑟

𝜕𝑢𝑧

𝜕𝑧
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Small strains in Curvilinear 
Coordinates



𝜕𝑢𝜌

𝜕𝜌

1

2𝜌

𝜕𝑢𝜌

𝜕𝜃
−

𝑢𝜃

2𝜌
+

1

2

𝜕𝑢𝜃

𝜕𝜌

1

2𝜌 sin 𝜃

𝜕𝑢𝜌

𝜕𝜙
−

𝑢𝜙

2𝜌
+

1

2

𝜕𝑢𝜙

𝜕𝜌

1

2𝜌

𝜕𝑢𝜌

𝜕𝜃
−

𝑢𝜃

2𝜌
+

1

2

𝜕𝑢𝜃

𝜕𝜌

𝑢𝜌

𝜌
+

1

𝜌

𝜕𝑢𝜃

𝜕𝜃

1

2𝜌

1

sin 𝜃

𝜕𝑢𝜃

𝜕𝜙
− 𝑢𝜙 cot 𝜃 +

𝜕𝑢𝜙

𝜕𝜃

1

2𝜌 sin 𝜃

𝜕𝑢𝜌

𝜕𝜙
−

𝑢𝜙

2𝜌
+

1

2

𝜕𝑢𝜙

𝜕𝜌

1

2𝜌

1

sin 𝜃

𝜕𝑢𝜃

𝜕𝜙
− 𝑢𝜙 cot 𝜃 +

𝜕𝑢𝜙

𝜕𝜃

𝑢𝜌

𝜌
+

𝑢𝜃 cot 𝜃

𝜌
+

1

𝜌 sin 𝜃

𝜕𝑢𝜙

𝜕𝜙
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