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Last Week: Outstanding Issues

• It is expected that you should have read up on the notes and slides 
from last week. I will not ordinarily repeat them in this week’s 
matter but there are two issues that can prevent you from coping 
if, you have not thoroughly mastered them:
• Determinant of a Product

• Trace of a Composition, and

• Scalar Product of Two Tensors
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Determinant of a Product

• For the tensors 𝐀 and 𝐁, we use the definition of the determinant 
to show that det 𝐀𝐁 = det 𝐀 × det 𝐁:

• Select linearly independent vectors 𝐚, 𝐛 and 𝐜. If 𝐁 is non-singular, 
it is easy to show that 𝐮 = 𝐁𝐚 , 𝐯 = 𝐁𝐛 and 𝐰 = 𝐁𝐜 are also 
linearly independent.

det 𝐀𝐁 =
𝐀𝐁𝐚,𝐀𝐁𝐛, 𝐀𝐁𝐜

𝐚, 𝐛, 𝐜
=

𝐀𝐁𝐚, 𝐀𝐁𝐛,𝐀𝐁𝐜

𝐁𝐚, 𝐁𝐛, 𝐁𝐜

𝐁𝐚, 𝐁𝐛, 𝐁𝐜

𝐚, 𝐛, 𝐜

=
𝐀𝐮, 𝐀𝐯, 𝐀𝐰

𝐮, 𝐯,𝐰

𝐁𝐚, 𝐁𝐛, 𝐁𝐜

𝐚, 𝐛, 𝐜
= det 𝐀 × det 𝐁
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𝐀𝐮,𝐀𝐯, 𝐀𝐰

𝐮, 𝐯,𝐰



The Inner Product Tensors

• The inner product of tensors 𝐒 and 𝐓 is the trace
𝐒: 𝐓 ≡ tr 𝐒T𝐓 = tr(𝐒𝐓T)

• For the tensor, 𝐓 = 𝑇𝛼𝛽 𝐞𝛼 ⊗𝐞𝛽 , this definition leads to a simple 
formula for the components of tensors as we shall show:

• Consider the composition, 𝐓 𝐞𝑗 ⊗𝐞𝑖 . We take the trace of this 
composition and obtain,

tr 𝐓 𝐞𝑗 ⊗𝐞𝑖 = tr 𝑇𝛼𝛽 𝐞𝛼 ⊗𝐞𝛽 𝐞𝑗 ⊗𝐞𝑖

= tr 𝑇𝛼𝛽 𝐞𝛼 ⊗𝐞𝑖 𝛿𝛽𝑗

= 𝑇𝛼𝛽𝛿𝛼𝑖𝛿𝛽𝑗 = 𝑇𝑖𝑗
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The Inner Product Tensors

• From the above definition, the scalar components of tensor 𝐓 on 
the dyad bases 𝐞𝑖 ⊗𝐞𝑗 is given by,

𝑇𝑖𝑗 = tr [𝐓 𝐞𝑗 ⊗𝐞𝑖 ]

= tr[𝐓 𝐞𝑖 ⊗𝐞𝑗
T
]

= 𝐓: 𝐞𝑖 ⊗𝐞𝑗

• The definition of the inner product of tensors leads to a simple 
way to compute the components. Just like vectors, it is by simply 
taking the inner product with the product base.

Monday, September 9, 2019www.oafak.com; www.s2pafrica.org; oafak@unilag.edu.ng

5



Properties Covered Here

• In continuation of our closer 
examination of the properties of 
tensors; we shall cover the 
properties listed here.

• The Mathematics may look 
cumbersome, the strategy is 
simple: Focus on definitions and 
principles, all that will be left is the 
repeated applications of simple 
rules.

• You will surprise yourself on what 
you will know at the end!
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Property

1. Members of a Euclidean Vector Space

2. Additive Decompositions (4)

3. The Cofactor Tensor

4. Orthogonal Tensors

5. Vector Cross: Other side of the Coin

Axial Vector



The Tensor: A 
Euclidean 

Vector Space
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One consequence of the foregoing is 
the important fact that the set of 
tensors, as we have defined it, 
constitutes a Euclidean Vector 
Space.

With this approach, the definition of 
a tensor as a linear transformation 
of vectors, applies to tensors of 
higher orders!



• In the same way as vectors, the inner product of tensors induces the 
concept of magnitude and direction to tensors. 

• Inspired by the fact that 𝐓:𝐓 is a scalar, we define the magnitude of a tensor 

𝐓 = 𝐓:𝐓

• The angle between two tensors can be computed from,

𝜃 = cos−1
𝐒: 𝐓

𝐒 𝐓
.

• Unlike vectors, these values do not have the familiar geometric 
interpretation of directed lines and included angles. The algebra 
trumps the geometry. 

Tensor Magnitude & Direction 8
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The Tensor Set as a Vector Space

A second-order tensor fulfils all the stipulations necessary to be a 
Euclidean Vector Space 𝕃:

• Addition operation is defined, it is commutative and associative
under 𝕃: that is, 𝐓 + 𝐒 ∈ 𝕃, 𝐒 + 𝐓 = 𝐓 + 𝐒, 𝐓 + 𝐒 + 𝐕 = 𝐓 + 𝐒 +
𝐕, ∀ 𝐓, 𝐒, 𝐕 ∈ 𝕃. Furthermore,𝕃 is closed under addition: That is, 
given that 𝐓, 𝐒 ∈ 𝕃, then 𝐕 = 𝐓 + 𝐒 = 𝐒 + 𝐓,⇒ 𝐕 ∈ 𝕃.
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The Tensor Set as a Vector Space

• 𝕃 contains a zero element 𝐎 such that 𝐓 + 𝐎 = 𝐓 ∀ 𝐓 ∈ 𝕃. For 
every 𝐓 ∈ 𝕃, ∃ − 𝐓: 𝐓 + −𝐓 = 𝐎.

• Multiplication by a scalar. For 𝛼, 𝛽 ∈ ℝ and 𝐓, 𝐒 ∈ 𝕃, 𝛼𝐓 ∈ 𝕃 , 1𝐓 =
𝐓, 𝛼 𝛽𝐓 = 𝛼𝛽 𝐓, 𝛼 + 𝛽 𝐓 = 𝛼𝐓 + 𝛽𝐓, 𝛼 𝐓 + 𝐒 = 𝛼𝐓 + 𝛼𝐒.
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Axioms for 
Second-Order 

Tensors

Monday, September 9, 2019

• The Zero element in the Second Axiom is obviously 
the Annihilator Tensor. 

• The remaining two axioms are easily established 
by recalling that dyads can be added

• We break the tensor into its components as 
follows:

𝛼𝐒 + 𝛽𝐓 𝐮 = 𝛼𝑆𝑖𝑗(𝐞𝑖 ⊗𝐞𝑗) + 𝛽𝑇𝑖𝑗(𝐞𝑖 ⊗𝐞𝑗) 𝑢𝑙𝐞𝑙
= 𝛼𝑆𝑖𝑗 + 𝛽𝑇𝑖𝑗 𝑢𝑙 𝐞𝑖 ⊗𝐞𝑗 𝐞𝑙
= 𝛼𝑆𝑖𝑗 + 𝛽𝑇𝑖𝑗 𝑢𝑙𝐞𝑖𝛿𝑗𝑙 = 𝛼𝑆𝑖𝑗𝑢𝑗𝐞𝑖
= 𝛼𝐒𝐮 + 𝛽𝐓𝐮
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Decomposing Tensors 12

• We break vectors to their components in 
only one way. Tensors can be usefully 
broken down in several different ways.

• Some of these decompositions are, like 
the component form, additive. Others 
are multiplicative.

• Additive decompositions include 
Skew & Symmetric Forms, Spherical 
and Deviatoric Forms, Spectral 
Representation

• The Important Multiplicative is the 
Polar Decomposition.
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Decomposing 
Tensors
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Component Form: 
Weighted sum of 
Dyads adds up to 
the Tensor

Components are 
the weights. This 
turns the tensor 
into a weighted 
sum of up to nine 
dyad bases. 

Three other Additive 
Decompositions are 
possible. 

Symmetric & 
Skew Parts, and

Spherical & 
Deviatoric Parts

Spectral Form of 
eigenbases

There are also Multiplicative 
Decompositions of Tensors



Spherical & Deviatoric Parts

• Every tensor can be decomposed into Spherical and Deviatoric 
parts. The Spherical Part of a tensor is obtained by dividing its 
trace by three and using the result to scale an identity tensor. For 
a tensor 𝐒, 

• Spherical Part, the real multiplier of the Identity Tensor, 𝛾 =
1

3
tr 𝐒 so that,

sph 𝐒 =
1

3
tr 𝐒 𝐈 =

1

3
𝑆𝑘𝑘𝛿𝑖𝑗𝐞𝑖 ⊗𝐞𝑗

• Deviatoric Part is what remains after removing the Spherical Part:

dev 𝐒 = 𝐒 −
1

3
tr 𝐒 𝐈 = 𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗 𝐞𝑖 ⊗𝐞𝑗
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Traces of Spherical & Deviatoric Parts 15

• For the Spherical Part, the trace,

tr sph 𝐒 =
1

3
tr 𝐒 tr 𝐈 =

1

3
tr 𝐒 3 = tr 𝐒

equals the trace of the original, undecomposed tensor.

• For the Deviatoric Part, the trace, 

tr dev 𝐒 = tr 𝐒 −
1

3
tr 𝐒 tr 𝐈 = tr 𝐒 − tr 𝐒 = 0.

• The deviatoric component has zero trace. A tensor 
with zero trace is said to be “traceless”.
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Skew & Symmetric Parts

• We can also decompose a tensor 𝐒, into Symmetrical and Anti-
Symmetrical parts. 
• An Anti-Symmetric tensor, also called a Skew Tensor is defined as that which 

is the negative of its transpose. 

• The Symmetric Part, 

sym 𝐒 =
1

2
𝐒 + 𝐒T =

1

2
𝑆𝑖𝑗 + 𝑆𝑗𝑖 𝐞𝑖 ⊗𝐞𝑗

• And the Skew Part: 

skw 𝐒 =
1

2
𝐒 − 𝐒T =

1

2
𝑆𝑖𝑗 − 𝑆𝑗𝑖 𝐞𝑖 ⊗𝐞𝑗
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Skew & Symmetric Parts

• The transposes,

•

sym 𝐒 T =
1

2
𝐒 + 𝐒T

T

=
1

2
𝐒T + 𝐒T

T
= sym 𝐒

skw 𝐒 T =
1

2
𝐒 − 𝐒T

T

=
1

2
𝐒T − 𝐒T

T
= −skw 𝐒
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Transpose of a sum equals the sum 

of the transposes:

𝐚 ⋅ 𝐒 + 𝐓 T𝐛 = 𝐛 ⋅ 𝐒 + 𝐓 𝐚
= 𝐛 ⋅ 𝐒𝐚 + 𝐛 ⋅ 𝐓𝐚
= 𝐚 ⋅ 𝐒T𝐛 + 𝐚 ⋅ 𝐓T𝐛

And, further, transpose of a 

transpose is the original vector



Component Method

• The Symmetric Part, 

sym 𝐒 T =
1

2
𝑆𝑖𝑗 + 𝑆𝑗𝑖 𝐞𝑗 ⊗𝐞𝑖 = sym 𝐒

• And the Skew Part: 

skw 𝐒 T =
1

2
𝑆𝑖𝑗 − 𝑆𝑗𝑖 𝐞𝑗 ⊗𝐞𝑖

= −
1

2
𝑆𝑖𝑗 − 𝑆𝑗𝑖 𝐞𝑖 ⊗𝐞𝑗 = −skw 𝐒

• It is often more instructive to prove these in the direct form 
whenever possible. 
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Traces of Skew & Symmetric Parts

tr sym 𝐒 =
1

2
tr 𝐒 + 𝐒T =

1

2
tr 𝐒 + tr 𝐒

• commutative property of the scalar product makes the trace of 
a transpose the same as the trace of the tensor from which the 
transpose is obtained. 

• For the same reason, a Skew tensor is traceless: 

tr skw 𝐒 =
1

2
tr 𝐒 − 𝐒T =

1

2
tr 𝐒 − tr 𝐒 = 0.

• The Spherical Part of a tensor is a diagonal tensor, and 
therefore, always symmetric. 
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tr 𝐒T = 𝑆𝑖𝑗tr 𝐞𝑗 ⊗𝐞𝑖
= 𝑆𝑖𝑗 𝐞𝑗 ⋅ 𝐞𝑖
= 𝑆𝑖𝑗 𝐞𝑖 ⋅ 𝐞𝑗
= 𝑆𝑖𝑗tr 𝐞𝑖 ⊗𝐞𝑗 = tr 𝐒



Symmetry of Deviatoric Parts

• No judgement can be made on the symmetry or 
skewness of a deviatoric tensor, however. Its 
symmetry wholly depends on the original tensor 
from which the deviatoric part is taken. 

• If the latter is symmetric, so will the deviatoric 
part. If skew, so also will the deviatoric part. 

• It is quite possible that the deviatoric tensor is 
neither symmetric nor skew.

www.oafak.com; eds.s2pafrica.org; oafak@unilag.edu.ng Monday, September 9, 2019 20



Transformation 
of Line 

Elements
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In Continuum Mechanics, we are 
concerned with changes in shape of 
objects that have been subjected to 
mechanical loads.

We shall see later that 
these creates 
important tensors such 
as stress, strain and 
deformation tensors. 

We are interested 
in what happens 
to line elements 
in materials 
where such strain 
and deformation 
tensors have been 
created by 
external loads.



• It will be our business to demonstrate (Chapter 4, Kinematics) that 
small line elements are transformed by applying the deformation 
gradient tensor to the original, vectors of undeformed line elements.

• What can we say about vectors of small areas in the deformed state?

• We will show that when a tensor transforms lines, the corresponding 
vector areas are transformed by its Cofactor.

Cofactor Tensor & Area Vector 22

Monday, September 9, 2019 www.oafak.com; eds.s2pafrica.org; oafak@unilag.edu.ng



• Vectors 𝐮 and 𝐯 have both been transformed by 
the same tensor 𝐓 to 𝐓𝐮 and 𝐓𝐯. 

• How is the vector area 𝐓𝐮 × 𝐓𝐯 created by 
these two vectors in the transformed state 
related to the original vector area 𝐮 × 𝐯 of 
the parallelogram as shown?

• The tensor transforming the area of 
parallelogram sides that have been 
transformed by tensor 𝐓 is called the cofactor, 
𝐓c of 𝐓.

• This is the physical meaning of the 
cofactor. Any other definition can be 
obtained from this physical definition.

The Cofactor & Area 
Vector
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The Cofactor is a Bilinear Transformation

• For example, given 𝛼, 𝛽 ∈ ℝ, and 𝐮, 𝐯,𝐰 ∈ 𝔼, the linearity of tensor 
𝐓 ⇒

𝐓 𝛼𝐮 + 𝛽𝐯 × 𝐓𝐰 = 𝛼𝐓𝐮 + 𝛽𝐓𝐯 × 𝐓𝐰
= 𝛼𝐓𝐮 × 𝐓𝐰+ 𝛽𝐓𝐯 × 𝐓𝐰
= 𝛼𝐓c 𝐮 × 𝐰 + 𝛽𝐓c 𝐮 × 𝐰
= 𝐓c 𝛼𝐮 + 𝛽𝐯 × 𝐰

• The last equality coming from the linearity of cofactor tensor 
𝐓c, and the distributive property of the vector product over 
addition.
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Components of the Cofactor

• For a tensor 𝐓, let the cofactor, 
cof 𝐓 = 𝐓𝐜 = 𝑇𝑖𝑗

𝑐𝐞𝑖 ⊗𝐞𝑗

• Clearly, the component,
𝑇𝑖𝑗
𝑐 = 𝐓𝐜: 𝐞𝑖 ⊗𝐞𝑗 = 𝐞𝑖 ⋅ 𝐓

𝐜𝐞𝑗

= 𝐞𝑖 ⋅ 𝐓𝐜
1

2
𝑒𝑗𝑚𝑛𝐞𝑚 × 𝐞𝑛

=
1

2
𝑒𝑗𝑚𝑛𝐞𝑖 ⋅ 𝐓𝐜 𝐞𝑚 × 𝐞𝑛
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Components of the Cofactor

• In the expression, 𝐞𝑖 ⋅ 𝐓𝐞𝑚 × 𝐓𝐞𝑛 we seek the 𝑖𝑡ℎ component of 
𝐓𝐞𝑚 × 𝐓𝐞𝑛. To get this, we remember that the 𝛼 and 𝛽 components of 
each operand are 𝐞𝛼 ⋅ 𝐓𝐞𝑚 and 𝐞𝛽 ⋅ 𝐓𝐞𝑛 respectively. Consequently we 

seek, 𝑒𝑖𝛼𝛽 𝐞𝛼 ⋅ 𝐓𝐞𝑚 𝐞𝛽 ⋅ 𝐓𝐞𝑛 so that,

𝑇𝑖𝑗
𝑐 =

1

2
𝑒𝑗𝑚𝑛𝑒𝑖𝛼𝛽 𝐞𝛼 ⋅ 𝐓𝐞𝑚 𝐞𝛽 ⋅ 𝐓𝐞𝑛

=
1

2
𝑒𝑖𝛼𝛽𝑒𝑗𝑚𝑛𝑇𝛼𝑚𝑇𝛽𝑛

• The Cofactor Tensor, in component form, 

𝐓c =
1

2
𝑒𝑖𝛼𝛽𝑒𝑗𝑚𝑛𝑇𝛼𝑚𝑇𝛽𝑛 𝐞𝑖 ⊗𝐞𝑗
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For any vector 𝐮,

𝐞𝑖 ⋅ 𝐮 = 𝑢𝑖
The 𝑖𝑡ℎ component of 𝐮



Components of the Cofactor

• Second principal invariant of 𝐓 is the trace of its cofactor,  tr 𝐓c

𝐼2 𝐓 =
1

2
𝑒𝑖𝛼𝛽𝑒𝑗𝑚𝑛𝑇𝛼𝑚𝑇𝛽𝑛 𝐞𝑖 ⋅ 𝐞𝑗

=
1

2
𝛿𝛼𝑚𝛿𝛽𝑛 − 𝛿𝛼𝑛 𝛿𝛽𝑚 𝑇𝛼𝑚𝑇𝛽𝑛

=
1

2
𝑇𝑚𝑚𝑇𝑛𝑛 − 𝑇𝑚𝑛𝑇𝑛𝑚

=
1

2
tr2 𝐓 − tr 𝐓2

• This is exactly same expression we obtained from the definition of 
the second Principal Invariant.
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Orthogonal Tensors 28

• In our study of tensor properties, we 
encountered some interesting tensors. 
The table here shows some of these 
tensors as we classify them into two 
groups as shown. 

• Tensors in the first group change the 
magnitude of the vectors they 
transform; the second group are 
tensors that create transformed 
vectors with the same magnitudes as 
the input vector.

• The second group are just two 
members of a distinguished class of 
tensors we will need to spend a little 
more time to know better. They are in 
a class called “Orthogonal tensors”. 
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CLASS ONE CLASS TWO

Projection
𝐏𝐱 ≡

1

𝐱

2

(𝐱 ⊗ 𝐱)
Identity 𝐈

Vector Cross 𝐯 × ≡ −𝑒𝑖𝑗𝑘𝑣𝑘𝐞𝑖 ⊗𝐞𝑗 Coordinate 

Rotation

𝛏𝑖 ⊗𝐞𝑖

Spherical 𝛾𝐈

Annihilator 𝐎

Dyad 𝐚⊗ 𝐛



Orthogonal Tensors 29
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CLASS ONE CLASS TWO

Projection
𝐏𝐱 ≡

1

𝐱

2

(𝐱 ⊗ 𝐱)
Identity 𝐈

Vector Cross 𝐯 × ≡ −𝑒𝑖𝑗𝑘𝑣𝑘𝐞𝑖 ⊗𝐞𝑗 Coordinate Rotation 𝛏𝑖 ⊗𝐞𝑖

Spherical 𝛾𝐈

Annihilator 𝐎

Dyad 𝐚⊗ 𝐛



• Given a pair of vectors 𝐚 and 𝐛, an orthogonal tensor 𝐐 is said to be 
orthogonal if, 

𝐐𝐚 ⋅ 𝐐𝐛 = 𝐚 ⋅ 𝐛

• Specifically, we can allow 𝐚 = 𝐛, so that 
𝐐𝐚 ⋅ 𝐐𝐚 = 𝐚 ⋅ 𝐚

• Or 
𝐐𝐚 = 𝐚

• As we can see, one important attribute of the orthogonal tensor is 
that the magnitude of the input as well as that of the result remain 
the same: A magnitude-preserving transformation.

Definition: What is an 
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• Let  𝐪 = 𝐐𝐚
𝐐𝐚 ⋅ 𝐐𝐛 = 𝐪 ⋅ 𝐐𝐛 = 𝐚 ⋅ 𝐛 = 𝐛 ⋅ 𝐚

• Recall the definition of the transpose; we have that,
𝐪 ⋅ 𝐐𝐛 = 𝐛 ⋅ 𝐐𝐓𝐪 = 𝐛 ⋅ 𝐐𝐓𝐐𝐚 = 𝐛 ⋅ 𝐚

• Clearly, 𝐐𝐓𝐐 = 𝐈. A condition necessary and sufficient for a tensor 𝐐
to be orthogonal is that 𝐐 be invertible and its inverse equal to its 
transpose. 

• Every orthogonal tensor possesses an inverse;

• This inverse is simply its transpose! 
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The Determinant of an 
Orthogonal Tensor

• Upon noting that the determinant of a product is 
the product of the determinants and that 
transposition does not alter a determinant, it is easy 
to conclude that,

det 𝐐𝐓𝐐 = det 𝐐𝐓 det 𝐐 = det 𝐐 2 = 1

• Which clearly shows that 
det 𝐐 = ±1

• When the determinant of an orthogonal tensor is 
strictly positive, it is called “proper orthogonal”. In 
particular, a rotation is a proper orthogonal tensor 
while a reflection is not. 
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Proper Orthogonal Tensors are Self-Cofactor

For any pair of vectors 𝐮, 𝐯 we show that 𝐐 𝐮 × 𝐯 = (𝐐𝐮) × (𝐐𝐯)

• This question is the same as showing that the cofactor of 𝐐 is 𝐐 itself. 
That is that a rotation is self cofactor. We can write that 

𝐐𝐜 𝐮 × 𝐯 = (𝐐𝐮) × (𝐐𝐯)

• where 
𝐓 = cof 𝐐 = det 𝐐 𝐐−T

• Now that 𝐐 is a rotation, det 𝐐 = 1, and 
𝐐−T = (𝐐−1)T = (𝐐T)T = 𝐐

• This implies that 𝐓 = 𝐐 and consequently, 
𝐐 𝐮 × 𝐯 = (𝐐𝐮) × (𝐐𝐯)

33
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One Eigenvalue of a Proper Orthogonal is +1

This means that there is always a solution for the equation,
𝐐𝐮 = 𝐮

• For any invertible tensor,
𝐒c = det 𝐒 𝐒−T

• For a proper orthogonal tensor 𝐐, det𝐐 = 1. It therefore follows that,
𝐐c = det𝐐 𝐐−T = 𝐐−T = 𝐐

• Characteristic equation for 𝐐 is,
det 𝐐 − 𝜆𝐈 = 𝜆3 − 𝜆2𝑄1 + 𝜆𝑄2 − 𝑄3 = 0

• Or,
𝜆3 − 𝜆2𝑄1 + 𝜆𝑄1 − 1 = 0

• Which is obviously satisfied by 𝜆 = 1.
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The Axial Vector

• The Vector Cross is a Skew Tensor.
• This fact can be seen by transposing and showing that the transpose is its 

negative.

• Like all other skew tensors, it is a traceless tensor.

• Now the question: Given a Skew tensor, can we find a vector that the 
tensor is a vector cross of? 
• When this happens, the vector found in this way is called the axial vector of the 

tensor.

• Note that, in either case, there are only three components. This is obvious for 
the vector.

• For the skew tensor, once three independent components are found, the 
remaining are simply the negatives of the independent components.
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The Axial Vector

• From Week Six (Slide 26) the vector cross was defined as:
𝛀 = 𝐯 × ≡ −𝑒𝑖𝑗𝑘𝑣𝑘𝐞𝑖 ⊗𝐞𝑗 = 𝛺𝑖𝑗𝐞𝑖 ⊗𝐞𝑗

• Given 𝛀 = 𝛺𝑖𝑗𝐞𝑖 ⊗𝐞𝑗 , can we solve the above equation for the 
components 𝑣𝑘?
• Sure, we can! Begin from,

−𝑒𝑖𝑗𝑘𝑣𝑘 = 𝛺𝑖𝑗
Multiply both sides by 𝑒𝛼𝑖𝑗 and we have:

−𝑒𝑖𝑗𝑘𝑒𝛼𝑖𝑗𝑣𝑘 = −2𝛿𝑘𝛼𝑣𝑘 = 𝑒𝛼𝑖𝑗𝛺𝑖𝑗

• The components of the axial vector are 𝑣𝑖 = −
1

2
𝑒𝑖𝑗𝑘𝛺𝑗𝑘
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