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Last Week: Outstanding Issues

* |t is expected that you should have read up on the notes and slides
from last week. | will not ordinarily repeat them in this week’s
matter but there are two issues that can prevent you from coping
if, you have not thoroughly mastered them:

« Determinant of a Product
« Trace of a Composition, and
 Scalar Product of Two Tensors
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Determinant of a Product 3

* For the tensors A and B, we use the definition of the determinant
to show that det AB = det A X detB:

 Select linearly independent vectors a,b and c. If B is non-singular,

it isteasy to show)that u(= Ba), v(= Bb)and w(= Bc) are also [Au, Av, Aw]
lingéarly independent. TR
A [ABa, ABb,ABc| [ABa, ABb, ABc[{Ba, Bb, Bc]
- _ [a,b, ] ~ [Ba,Bb, Bc] [a,b, ]

|Au, Av, Aw] [Ba, Bb, Bc]|
= = det A X detB
lu, v, w] la, b, c]
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The Inner Product Tensors

* The inner product of tensors S and T is the trace
S:T =tr(STT ) = tr(STT)

» For the tensor, T = T,z(e, ® eg), this definition leads to a simple
formula for the components of tensors as we shall show:

» Consider the composition, T(e; ® e;). We take the trace of this
composition and obtain,

tr[T(e; ® ;)] = tr [Top(en® ep)(e; &e))
— tr[Taﬁ(ea X el)5ﬁ]]

= Tap0aiOpj = Tij
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The Inner Product Tensors

* From the above definition, the scalar components of tensor T on
the dyad bases (e; ® e;) is given by,
T;; = tr [T(e; @ e;)]
= tr[T(e; ® ej)T]
=T:(e; ® e)
* The definition of the inner product of tensors leads to a simple

way to compute the components. Just like vectors, it is by simply
taking the inner product with the product base.
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Properties Covered Here Property

1. Members of a Euclidean Vector Space
* In continuation of our closer
examination of the properties of . _
tensors; we shall cover the 2. Additive Decompositions (4)
properties listed here.
« The Mathematics may look 3 The Cofactor Tensor
cumbersome, the strategy is
simple: Focus on definitions and
principles, all that will be left is the 4. Orthogonal Tensors
repeated applications of simple
rules.
« You will surprise yourself on what ) Vector Cross: Other side of the Coin
you will know at the end! Axial Vector
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One consequence of the foregoing is
the important fact that the set of

tensors, as we have defined it,

Th e Ten S O r.: A ggan\(s:tel'.tutes a Euclidean Vector
Euclidean
VeCtOr Space With this approach, the definition of

a tensor as a linear transformation

of vectors, applies to tensors of
higher orders!
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* In the same way as vectors, the inner product of tensors induces the
concept of magnitude and direction to tensors.
» Inspired by the fact that T: T is a scalar, we define the magnitude of a tensor

IT|l = VT: T
* The angle between two tensors can bSe Tgomputed from,
6 =cos 1 ———.
ISIITII

« Unlike vectors, these values do not have the familiar geometric
interpretation of directed lines and included angles. The algebra
trumps the geometry.

Tensor Magnitude & Direction
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The Tensor Set as a Vector Space

A second-order tensor fulfils all the stipulations necessary to be a
Euclidean Vector Space L:

« Addition operation is defined, it is commutative and associative
under L: thatis, T+S€eL,S+T=T+S,T+(S+V)=(T+5S) +
V,VT,SV € L. Furthermore,L is closed under addition: That is,
giventhat T, SeL,thenV=T+S=S4+T,=V € L.
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The Tensor Set as a Vector Space

* . contains a zero element O suchthat T+ 0 =TV T € L. For
everyTeEL, 3—T: T+ (-T) = 0.

» Multiplication by a scalar. Fora,f e Rand T,SeEL,aT €L, 1T =
T,a(BT) = (aB)T,(a + B)T = aT + BT, a(T+S) = aT + aS.
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* The Zero element in the Second Axiom is obviously
the Annihilator Tensor.

AX]OmS fo r » The remaining two axioms are easily established

by recalling that dyads can be added

SeCOn d - O rde r » We break the tensor into its components as

follows:
(CZS + IBT)U = (aSij(ei ® e]) + ,BTij(ei ® ej))ulel
Tensors = (C(Sij + BTij)ul(ei ® ej)el
= (aSij + ,BTij)uleiSjl = aSijujel-
= aSu + [fTu
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Decomposing Tensors

* We break vectors to their components in
only one way. Tensors can be usefully
broken down in several different ways.

» Some of these decompositions are, like
the component form, additive. Others
are multiplicative.

» Additive decompositions include
Skew & Symmetric Forms, Spherical
and Deviatoric Forms, Spectral
Representation

* The Important Multiplicative is the
Polar Decomposition.
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Component Form: Components are
the weights. This

We]ghted sum Of turns the tensor
int ighted

DyadS addS Up tO ]sTm? gfvﬁ)]gio ﬁine

the Tensor dyad bases.

Symmetric &

Three other Additive  Skew Parts, and

Decomposing

Decompositions are et
Te n SO rS pOSSible. Spectral Form of
eigenbases

There are also Multiplicative
Decompositions of Tensors




Spherical & Deviatoric Parts 14

 Every tensor can be decomposed into Spherical and Deviatoric
parts. The Spherical Part of a tensor is obtained by dividing its
trace by three and using the result to scale an identity tensor. For
a tensor S,

 Spherical Part, the real multiplier of the ldentity Tensor, y = %tr S so that,

1 1
Sph S = (gtr S)I = §Skk5ijei ® ej

» Deviatoric Part is what remains after removing the Ssherical Part:

1 1
devS =S — (gtl‘ S)I = (Sl] —§Skk5ij €; ® ej
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Traces of Spherical & Deviatoric Parts

* For the Spherical Part, the trace,
1 1
tr(sph S) = <§tr S) il = <§tr S) 3=trS

equals the trace of the original, undecomposed tensor.
* For the Deviatoric Part, the trace,

1
tr(dev S) = trS—<§trS>trI= ms s -0

» The deviatoric component has zero trace. A tensor
with zero trace is said to be “traceless”.
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Skew & Symmetric Parts

* We can also decompose a tensor S, into Symmetrical and Anti-
Symmetrical parts.

« An Anti-Symmetric tensor, also called a Skew Tensor is defined as that which
is the negative of its transpose.

« The Symmetric Part,
1 . 1
SymS=§(S+S )=§(SU+SJL)el®e]
* And the Skew Part: . .
skw § = E(S 7 ST) = E(SU —Sji)ei ® eJ'
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Skew & Symmetric Parts

* The transposes,

T
T 1
(symS)" = (2 ( S+ )) Transpose of a sum equals the sum
of the transposes:

1 T
1 s ST . ST — S (S+T)™H=b-(S+T)
. 2( ( ) ) 2 \ a + :b-Sa_I-I_-b-aTa

. —q-ST .TT
(SkWS)T:(%(S_ST)) =a-S'b+a-T'b

And, further, transpose of a
1 T transpose is the original vector
=2(sT—(ST) ) = —skws,
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Component Method

* The Symmetric Part,
(sym S)T = %(Sij + Sj;)e; @ e; =symS
* And the Skew Part:
(skw S)T =5 (S, = Sy )e; ® e
- _%(Sij = Sji)e; ® € = —skw'S

* |t is often more instructive to prove these in the direct form
whenever possible.
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Traces of Skew & Symmetric Parts 19

e ST - Sijtr(ej ® ei)
= Sij(ej - )

1 . 1
_ L tr(sym S) = ztr( S+S ) = (trS+ trS)
= S;tr(e; @ e;) =trS .
 lcommutative property of the scalar product makes the trace of
a transpose the same as the trace of the tensor from which the

transpose is obtained.
* For the same reason, a Skew tensor is traceless:

1 1
tr(skw S) = Etr( § S ) E(trs = S -0

* The Spherical Part of a tensor is a diagonal tensor, and
therefore, always symmetric.
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Symmetry of Deviatoric Parts

* No judgement can be made on the symmetry or
skewness of a deviatoric tensor, however. Its
symmetry wholly depends on the original tensor
from which the deviatoric part is taken.

* If the latter is symmetric, so will the deviatoric
part. If skew, so also will the deviatoric part.

* It is quite possible that the deviatoric tensor is
neither symmetric nor skew.
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Transformation
of Line
Elements

www.oafak.com; eds.s2pafrica.org; oafak@unilag.edu.ng

In Continuum Mechanics, we are
concerned with changes in shape of
objects that have been subjected to
mechanical loads.

We are interested

We shall see later that in what happens
these creates to line elements

in materials

important tensors such where such strain
and deformation

as stress, strain and P
deformation tensors. created by

external loads.
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* It will be our business to demonstrate (Chapter 4, Kinematics) that
small line elements are transformed by applying the deformation
gradient tensor to the original, vectors of undeformed line elements.

« What can we say about vectors of small areas in the deformed state?

« We will show that when a tensor transforms lines, the corresponding
vector areas are transformed by its Cofactor.

Cofactor Tensor & Area Vector 22
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The Cofactor & Area
Vector

» Vectors u and v have both been transformed by
the same tensor T to Tu and Tv.

* How is the vector area Tu X Tv created by
these two vectors in the transformed state
related to the original vector area u X v of
the parallelogram as shown?

» The tensor transforming the area of
parallelogram sides that have been

transformed by tensor T is called the cofactor,
TC of T.

» This is the physical meaning of the
cofactor. Any other definition can be
obtained from this physical definition.
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The Cofactor is a Bilinear Transformation

« For example, given a,f € R, and u,v,w € E, the linearity of tensor

=

T(au + Bv) X Tw = (aTu + fTv) X Tw
aTu X Tw + fTv X Tw
aT(u X w) + fT(u X w)

= T¢((au + Bv) X w)
* The last equality coming from the linearity of cofactor tensor

T€, and the distributive property of the vector product over
addition.

www.oafak.com; eds.s2pafrica.org; oafak@unilag.edu.ng Monday, September 9, 2019

24



Components of the Cofactor

* For a tensor T, let the cofactor,
catl =1 = Tlﬁ-ei ® e]'

 Clearly, the component,
TS =T%(e;  e;) = e; - T,

1
= £ 1 (E ejmnem X en§
1

7 Eejmnei Mie, <¢e, )]
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Components of the Cofactor 26

For any vector u,

* In the expression, e; - (Te,, X Te,)) we seek the i*" component of P
Te,, X Te,. To get this, we remember that the « and 8 components of The i" component of u

each operand are e, - Te,, and e; - Te, respectively. Consequently we
seek, ejup(e, - Ten)(ep - Tey,) so that,
1

Tii' 7 2 CimnCiap (e, e ) (eﬁ / Ten)
1

E Ciap ejmnTamTﬁn

 The Cofactor Tensor, in ci)mponent form,
T® = 5 eiaﬁejmnTamT,Bn(ei X ej)
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Components of the Cofactor

» Second principal invariant of T is the trace of its cofactor, tr T€

1
12 (T) 7 EeiaﬁejmnTamTﬁn(ei / ej)

1
7 E (5am5,8n — Ogn 5,[>’m)TamTﬁn

1
7 E (Tmann 7 TmnTnm)
1
— E(tr2 T — tr T?)
 This is exactly same expression we obtained from the definition of
the second Principal Invariant.
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Orthogonal Tensors 28

* In our study of tensor properties, we
encountered some interesting tensors. CLASS ONE CLASS TWO
The table here shows some of these
tensors as we classify them into two < 2 o I
groups as shown. rojection P, ( 1 ) x® %) entity

Il

» Tensors in the first group change the
magnitude of the vectors they

transform; the second group are 9L 0 (v x) = —eijuvie; @ e goord.inate & @ e
tensors that create transformed otation

vectors with the same magnitudes as

the input vector. Spherical .

» The second group are just two
members of a distinguished class of Annihilator 0
tensors we will need to spend a little
more time to know better. They are in
a class called “Orthogonal tensors”. Dyad a®b
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CLASS ONE

Projection

Vector Cross

Spherical

Annihilator

Dyad

CLASS TWO

p, = (”_)1(”)2 x® %) |dentity I
(vX) = —e;jpvie; @ e Coordinate Rotation & Qe
yl
0
a®b

Orthogonal Tensors 29
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Given a pair of vectors a and b, an orthogonal tensor Q is said to be

orthogonal if,
(Qa) - (Qb) =a-b
Specifically, we can allow a = b, so that

(Qa)-(Qa)=a-a
Or
IQal| = ||al|

As we can see, one important attribute of the orthogonal tensor is
that the magnitude of the input as well as that of the result remain
the same: A magnitude-preserving transformation.

Definition: What is an
Orthogonal Tensor? 30
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* let q=0Qa
(Qa)-(Qb)=q-Qb=a-b=b-a

» Recall the definition of the transpose; we have that,
q-Qb=b-Q'q=b-Q'Qa=b-a

» Clearly, QTQ = I. A condition necessary and sufficient for a tensor Q

to be orthogonal is that Q be invertible and its inverse equal to its
transpose.

 Every orthogonal tensor possesses an inverse;
* This inverse is simply its transpose!

Definition: What is an
Orthogonal Tensor? 31
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The Determinant of an
Orthogonal Tensor

« Upon noting that the determinant of a product is
the product of the determinants and that
transposition does not alter a determinant, it is easy
to conclude that,

det (QTQ) = (det QT)(det Q) = (det Q)% =1

* Which clearly shows that
(detQ) = +1

* When the determinant of an orthogonal tensor is
strictly positive, it is called “proper orthogonal”. In
particular, a rotation is a proper orthogonal tensor
while a reflection is not.
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Proper Orthogonal Tensors are Self-Cofactor

For any pair of vectors u, v we show that Q(u x v) = (Qu) X (Qv)

* This question is the same as showing that the cofactor of Q is Q itself.
That is that a rotation is self cofactor. We can write that

Q°(u xv) = (Qu) x (Qv)

 where

T = cof(Q) = det(Q) Q"
* Now that Q is a rotation, det(Q) = 1, and
Q'=QH"'=@QH"=Q
« This implies that T = Q and consequently,
Q(u xv) = (Qu) X (Qv)
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One Eigenvalue of a Proper Orthogonal is +1 34

This means that there is always a solution for the equation,
Qu=u

For any invertible tensor,
S¢ = (detS)S™T
For a proper orthogonal tensor Q, detQ = 1. It therefore follows that,
Q= (detQ)Q"=Q " =Q
Characteristic equation for Q is,
det(Q A = 2 — 10, + 10, — 0, =0

* Or,
/‘lS_AZQl‘l'AQl_l:O

» Which is obviously satisfied by 1 = 1.
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The Axial Vector

 The Vector Cross is a Skew Tensor.

» This fact can be seen by transposing and showing that the transpose is its
negative.

» Like all other skew tensors, it is a traceless tensor.

« Now the question: Given a Skew tensor, can we find a vector that the
tensor is a vector cross of?

* When this happens, the vector found in this way is called the axial vector of the
tensor.

* Note that, in either case, there are only three components. This is obvious for
the vector.

» For the skew tensor, once three independent components are found, the
remaining are simply the negatives of the independent components.
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The Axial Vector

* From Week Six (Slide 26) the vector cross was defined as:
= (V X) = —€jjk VK€ X e .Qijel- X €
* Given Q = (};;e; ® e;, can we solve the above equation for the
components v, ?
 Sure, we can! Begin from,
—ejkVk = {1
Multiply both sides by e,;; and we have:
—€jkCaijVk = —20kqVk = €qijfdij

. 1
 The components of the axial vector are v; = —=e¢; ;2
2
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