Tensor Algebra:
Properties of a Tensor

“Continuum Mechanics may appear as a fortress surrounded
by the walls of tensor notation” E. Tadmore, et. al.

MetaData

The prose, video, slides and the Q&A in this chapter are directed at scoring the following points:

1. The word “Tensor” applies to virtually all the quantities encountered in Engineering. Scalars and Vectors
are zeroth and first order tensors. However, the word, with no prefix, refers to a second-order tensor.

2. For an object to be proved to be a tensor we need to show that it transforms a vector and its output is also
a vector. Secondly, that transformation must be linear.

3. A tensor can be expressed in Component Form. The vector itself is more than its components as
components presume reference to particular coordinate system. Outside that the numbers mean nothing.

4. For any tensor, certain scalar-valued functions are characteristic of the tensor, independent of coordinate

systems. These are usually the targets of computations of any tensor. They are Principal Invariants.



5. Tensors can be decomposed additively or multiplicatively to simpler tensors. The goal is to make analysis

easier and gain valuable insight by removing parts of the tensor not crucial to the problem.



What is a Tensor

It is a historical accident that the word “Tensor” first and foremost, refers, not to tensors
generally, but to the second-order tensor. Strictly speaking, all the quantifiable objects we deal
with are tensors. Scalars are known to be zeroth order tensors, vectors are first order tensors.
We will later encounter third and fourth order tensors. It is assumed here that we already know
what vectors and scalars are even though more time can still be spent to give more
mathematically accurate definitions for each. We elect, initially, not to pursue that line. At the
present moment, our principal concern is to define second-order tensors and understand their

properties. Before we define these formally, we shall look at two familiar geometric occurences.

The Shadow or the Projection.

If you can identify four distinct directed arrows in figure 2.1, they are representing four vectors.
The Brown arrow, (vector) labelled “x” is lying “on the ground” and the rest are on a different
plane. Of the remaining three, there are two copies of each. For each color or size, there is a free-
standing copy, and another copy in a pile up. What we see as shadows are called projections in
the mathematical sense.

We define the projection, in the direction of

o x € E, P,(¢) of v € E as follows:
112
P,(v) = P,v = (m) x Q@ x)v

4 When it operates on any vector, it creates a
vector on the plane of vector X, and in the

4 same direction as X.
Observe that the projection of the pile up is

equal to the sum of the individual

projections; If, for example, we have a

vector, twice the size of v, Its projection will

Figure 0-1 Projection Transformation also be twice the size of the projection of v.



In any case, the argument in the transformation is a vector, what you get out of it is also a vector.
We call this the projection transformation. It is a transformation, whether we get it from the rays
of the sun, shining on the arrows of from a mathematical engine as we have done here. The
arrows have been transformed, linearly, to the plane containing vector X; or, alternatively, they
have been projected — “projection” being the name of the transformation we are dealing with

here.

Coordinate Transformation

In figure 2.2, there are two sets of Ortho-Normal Basis ONB (unit magnitude for each base vector,
and mutual orthogonality for any pair) vectors. One set has the basis {e;, e,, €5} while the other
is the set {&;,&,,&}. We define the Coordinate Transformation of v € E defined in the

coordinates with basis {e;,e,,e3} as the

€3 : &3
expression, -

Cv=(§ Qe)v
Suppose our parameter vector
v =2e; +3e, —e; = aje;
P,(v) = (§; ® e)aje;
= a;8i(e; - €)) = a;8,6;
= a;§ = 28 + 38, — &3

So that the transformation takes any vector

&2

)

referred to the first set of coordinates and
places them in exactly the same size, direction and location in the second coordinate system. It
effects a change of coordinate system.
These transformations are only two examples of what a tensor does: It

1. takes one vector

2. produces another vector, and

3. performs the transformation linearly.
There is no doubt that in each of the transformations we have seen, the inputs (arguments) as
well as the outputs (results) were vectors. What do we really mean by the term, “transforms

linearly”?



These two, P, () as well as C(e), transform in such a way that the transformation of a sum is the
sum of the transformations; the transformation of a scalar multiple, is also a scalar multiple of
the transformation; The transformation of a weighted sum is the weighted sum of the
transformation.

Definition:

A Second-Order Tensor is the linear transformation of a vector into a vector.

Giventhata,b € Eand a, f € R, T is said to be a linear transformation if

T(aa + fb) = aTa + BTb

Linear

aa+[b Operator

aTa + Tb

The projection as well as the coordinate transformations we have seen are Linear
Transformations; and because they tansform from the vector space to the vector space, they are
tensors of the second order. The projection transforms linearly because,
Clau + pv) = (§; @ e;)(au + Bv)
=&(e; - (qu+ pv)) =& (ae;-u+pe;-v)
= a§;(e; - u) + p§;(e; - v)
=a(§; ®e)u+p(E; Q e)v

= aCu + SCv
As shown in Figure___, the actual implementation of the operator in not the important thing. In

the case of a shadow, the transformation could have come from the parallel rays of the sun or a
mathematical factory like the tensor projector; for the coordinate transformation, again, it can
be the mathematical formula given or that someone was sitting in a roller coaster and carrying
the coordinate systems as well as the vector along. A linear transformation is defined, once the
output relates linearly to the input. When such transforms a vector into another vector, it is a
second-order tensor. Conventionally, the word “tensor” unqualified, refers to the second-order
tensor. Usually, when we want to talk about tensors of other orders, an explicit reference to the

order will be made unless the context already makes that clear.



Other Interesting Tensors
We adopt the convention that the set L is the set of all second-order tensors. Therefore, the
statement, T € L, literally that, T belongs to the set I. means that T is a second order tensor. At
this point, we have now met three tensors: The Dyad Product of two vectors, the Projection
Tensor and the Coordinate Transformation Tensor.
u®vP,CSeL

We now proceed to show the characteristics of other tensors that obey the same rules we have
enunciated in the last section:
The Annihilator. We represent this tensor by the large size capital O. It has this characteristic; for
any vectorv,

Ov=o0
yielding the zero vector as output (result), no matter the input (argument, operand).
The Identity & Spherical Tensors. The identity tensor is depicted by the large size capital bold I.
It has this characteristic; for any vector v,

Iv=v
returning the input vector, no matter the input. Furthermore, Va € R, the tensor, al is called a
Spherical Tensor.
A spherical tensor is uniquely identified by the scalar multiplier of the identity tensor that
produces it. It is therefore easy to misrepresent it as a scalar or a vector with equal components
in the three directions. An example of this, as we shall see later, is hydrostatic pressure.
The Inverse. The identity tensor induces the concept of an inverse of a tensor. Given the fact that
if T € L and u € E, the mapping w = Tu produces a vector. Consider a linear mapping Y, that,
operating on w, produces our original argument, u, if we can find it:

Yw =u
As a linear mapping, operating on a vector, clearly, Y is a tensor. It is called the inverse of T
because,

YW =YTu=u

So that the composition (or product) YT = I, the identity mapping. For this reason, we write,

Yy=11



We now show that this relationship also implies that TY = I. Recall the vector defined by, w =
Tu. Clearly,
TYTu=TYW=TIu=Tu=w
(First equality by the definition of w, second by the fact that YT = I). It is clear that
TYw =w

Sothat TY = YT = I as required.

Tensor Components

Tensors, just like vectors, can be expressed in component form with respect to a system of
coordinates created with basis vectors. Using ONB, for a typical tensor T, we can write,
T=Te; ® e
There are nine scalar components. These can be computed using the indicial notation and the
summation convention. Accordingly,
T=The, Qe +Tpe; Qe +Ti3e,Qe;+ T, Qe +Tre, e, +The, Qe
+ 7365 Q0 e, + T35 Q e, +Tyze5 X e;
We can find these components in terms of the tensor T in a way like the way we found the vector
coefficients:
e, Tep =Tije, - (e; QD ej)ep
=Tijeq - €i6jp = Tij6ia0jp
= Tap
Clearly,
T=(e; Te)(e;Re;) =Tie; Qe
In particular, e; - le; = e; - €; = §;; so that the identity tensor has the representation,
I=(e;-Iej)(e;®e) =6e,Qe =€, Qe
A third form for the component representation of the tensor can be found by observing that,
TI=T(e; Re) = (Te) Ve; =e; Q(T'e)
In this section, we can see that the Kronecker Deltas introduced in the previous chapter are

coefficients of the identity tensor as we can see in equation .



Components of a Composition.
A composition is a product of two transformations. Given that S and T are tensors, the
application of T followed by the application of S to the result, is a composition tensor. Consider
the composition of two tensors, S and T. Its action on an arbitrary vector v = v, ey is,
STv = S(Tv).
That s, S acts on the vector result of the action Tv. In order to find the component representation
of this composition, it is useful to simplify the result dyad composition
(ex @ ep)(e: ®e))
We do this by finding its action on a typical vector.
(e @ ep)(e: ®ej)u= (e ®ep)es(e;-u)
= eqepe)(e u)
= (ep-e;)(ec @ ej)u
Showing that composing two dyads has the same effect as obtaining a dyad from the two extreme
base vectors e, and e; in this case, scaling the result by the dot product of the near vectors, eg
and e;. Clearly,
ST = (Sapea ® €g)(Tije; @ €))

= SapTij(ea ® eg)(e;: ® €;) = SapTij(es - €; )(e. Q ¢))

= SapTij0pi(€s @ €))

= SaiTijeq @ € = Sy Tyje; & e;
The result of the product of two dyads in this section can be generalized to a larger number of
dyads. Given a;q, a;, ... a;, € [, the product

(an @ a;) (a3 ® ay4) ... (Ayn-1) ® asn)
can be shown to result in simply taking the first and the last of the vector operands and
multiplying the that by the scalar products of all adjacent vectors:
(an ® a2) (A @ ai4) - (Aytn-1) @ asn)
= (a;1 ® a;) (@12 - 233) @i - As5) - (Ain—2) * Ai(-1))-

Reducing any tensor to a weighted sum of dyads is one way to simplify analyses as the dyads are

much easier to deal with for this and several other reasons as we shall see.



Transpose of a Tensor, Symmetry

Given any two vectors, u and v, and tensors S and T, S is called the transpose of T if,
u-Sv=v-Tu
It is customary to use the same symbols for a tensor and its transpose. Accordingly, the transpose
of S will be written as ST. Furthermore, by virtue of the definition of transpose here, if S is the
transpose of T, then T is the transpose of S
A tensor equal to its transpose is said to be symmetrical. Tensor S is symmetrical if,
S=sT
Given the dyad a @ b. For any two vectors, uand v,
u-@®b)v=(u-a)(b-v)=v-(b®a)u
This shows that the transpose of a dyad is simply the swapping of its operands. Consequently,
we find that, for S = ST,
Siei®e;=5,(e®¢)
=S5eQe =Sje Qe
So that, symmetry implies S;; = §j;. Furthermore, we find that S(u ® v) = Su ® v because, for
a vector w,
Su®@v)w=Su(v-w) = (Su@ v)w
and,
(u®v)Sw =u(v-Sw)
=u(w-STy) = u((STV) -w)

=u®STv)w

Tensor Invariants

Very often we are more interested, not in the tensors themselves but in scalar valued functions
that take the tensor as argument. We will see several of these subsequently; perhaps the most
important are the principal invariants of the tensor. For any three linearly independent vectors
a,b and c and a tensor T, it is can be shown (see Q&A) that, the three scalar valued functions
1,(T),I,(T) and I5;(T) defined below are independent of the choice of a,b and ¢ and are

therefore, intrinsic, or characteristic values of the tensor T:

9



[Ta,b,c] + [a, Tb,c] + [a,b, Tc]

L,(T) = [ab,d =trT
Ta, Tb, c| + [a, Tb, Tc| + [Ta, b, Tc

IZ(T)=[ ] [[abc]] [ ]=trTC,and
[Ta, Th, Tc]

I(T) = b - detT

Are respectively called the trace of T, trace of its cofactor and determinant of T respectively.
They are known as the principal invariants of the tensor. In particular, I (T), trace of T, is a linear

operator because, given scalars a 8 as well as tensors T and S,

[(aT + BS)a,b,c] + [a, (aT + BS)b,c]| + [a, b, (aT + BS)c]

I,(aT + BS) = @b,
_ [(aT)a,b,c] + [(8S)a,b, ] N [a, (aT)b, c] + [a, (BS)b, c]
[a, b, c] [a, b, c]
N [a,b, (aT)c] + [a, b, (8S)c]
[a,b, c]
[Ta,b,c] + [a, Tb,c] + [a,b, Tc] [Sa,b,c] + [a,Sb,c] + [a, b, Sc]
- ¢ [a,b, c] +h [a,b, c]

= al,(T) + B1,(S).
If T is a dyad, say, T=u @ v, and we select the Cartesian ONB vectors as our linearly

independent set, then,

tra@®@v) =L V)
{(u®v)e }, e es] + e, {(u®v) e}, e;] + [eq, €5, {(u ® v)es}]

[ell €, e3]

1
= I{[Vﬂl: e, e3] + [e, vou,e3] + [eq, e3,v3ul}

= {(v1u) - (ez3:€)) + (e31;€;) - (v2u) + (e12:€;) - (vzw)}

= {(v1w) - (e231€1) + (e312€;) - (v,u) + (er3€3) - (VsW)} = vy

=u-v
So that the trace of a dyad is simply the scalar product of its two vector operands. Note that we
chose the base vectors in the above derivation since any three linearly independent vectors will

be appropriate as the trace itself is independent of that choice.

10



It is easily shown, in this same way that, [,(u @ v) = I5(u ® v) = 0. Important to note that
neither I, (T) nor I5(T) is linear for any tensor T.
Other scalar invariants may be defined. Another set {J;(T) =trT, J,(T) = tr T?, J5(T) =
tr T3} has been defined, all arising from equation _____ defining the trace.
We now show that the coefficient T;; in the component representation,
T=(e; Te)(e;De;) =Tije; Qe
of T,
T,;=e;-Tej = tr (T(ej 29 ei))
= tr (Te; @ e;) = e; - Te,
= tr (TT(ei ® ej)) =TTe; - ¢
=e; - Te;
This leads to a definition:
The Inner Product of two tensors
The inner product of tensors S and T is the trace
S:T=tr(STT) = tr(STT)
From the above result, the scalar components of tensor T on the dyad bases (el- X ej) is given
by,
T = T:(e; ® e))
The Trace, I;(T) =tr T
Beginning from the component representation,
T=Te; ® e
Taking the trace of both sides, we have,
trT="T;tr(e; @) =T;6;; =Ty
as we have shown earlier that the trace of a dyad is the scalar product of its operands. We note
that transposing a tensor does not alter its trace because,

trTT =T;tr(e; ® e;) =T;;6;; =Ty = tr T.

11



Trace of the Cofactor, I,(T) = tr T€
The cofactor will be defined subsequently. Presently, we rely in the earlier definition of the

second principal Invariant:

_ [Ta, Tb,c] + [a, Th, Tc] + [Ta,b, Tc] .
L,(T) = @b, =trT

To express this in component form, we set our linearly independent set as the basis set, e, e, e5.

Note immediately that [e,, e,, €3] = 1, so that,
I,(T) = [Te,, Te,, e3] + [e1, Te,, Tes]| + [Tey, e,, Tes]
= [Tij(e: ® j)er, Top(eq ® eg)ez,es] + [e1, Top(en ® ep)es, Tij(e: ® e))es]
+ [Tap(eq ® ep)es, e, Tij(e; @ €))es]
= [Ti18 Taz€a €3] + [€1, Tazeq, Tizei] + [Ta1 €0, €2, Tiz€;]
= TiuTazlei eq €3] + TazTis[er, €q, €] + ToiTis[eq, €3, €]
= TiaTaz€ia3 + Ta2Tiz€1ai + Ta1TizCazi

=T11Toz = To1Tip + TopT33 — T33T23 + T11T33 — T31T13
1
= E(TiiT,-,- = TyTji)
Half of the square of the trace minus the trace of the square. Note that this invariant, I,(T) is
NOT linear in its argument T.

Exercise. Show that the second invariant is independent of the set of linearly independent

vectors chosen.

The Determinant, I3(T) = det T
As previously observed, any three linearly independent vectors can be treated as the basis for
defining the invariants. We select e4, e,, e;. For any tensor T,
I3(T) = [Te;, Tey, Tes] = [T;;(e; ® e;)ey, Tap(ea ® eg)ey, Trs(e, @ e)es]
= [Ti18 Taz€a Trser] = TiTaoTrs€iar
= Ti1Tj;Tyseiji = detT
For the tensors A and B, we use the definition of the determinant to show that detAB =
det A X detB:
Select linearly independent vectors a,b and c. If B is non-singular, it is easy to show that

u(= Ba), v(= Bb)and w(= Bc) are also linearly independent. Now,

12



[ABa,ABb,ABc] [ABa, ABb,ABc][Ba, Bb, Bc]

det AB = =
€ [a,b,c] [Ba, Bb, Bc] [a, b, c]
[Au, Av, Aw] [Ba, Bb, Bc]
= = detA X detB
[u, v, w] [a,b,c]

Tensor Magnitude and Direction.

In the same way as vectors, the inner product of tensors induces the concept of magnitude and
direction to tensors. Unlike vectors however, we do not have the same geometric interpretation
in terms of the lengths of directed lines and their included angles. Inspired by the fact that T: T

is a scalar, we define he magnitude of a tensor

IT| =VT:T
And, just like vectors, the angle between two tensors can be computed from,
0 = cos™?! >: T :
ISIIITII

With this definition, a second-order tensor fulfils all the stipulations necessary to be a Euclidean

Vector Space L:

1. Addition operation is defined and it is commutative and associative under L: that is, T +
Sel, S+T=T+S, T+(S+V)=(T+S)+V, VTS,V € L. Furthermore, LL is closed
under addition: That is, giventhat T,S € ,, thenV=T+S=S+T, =>w € V.

2. L contains a zero element O suchthat T+ O =TV Te€ L. Foreveryuel, 3—T: T+
(-T)=0.

3. Multiplication by a scalar. For ¢, BER and T,S€EL, aTEL , 1T=T, a(fT) =
(aB)T, (¢ + B)T =aT + BT, a(T+S) = aT + as.

Rule 1 is easily proven from linearity of transformations or using components. For example,

consider the sum transformation on an arbitrary u € V:

(S+Tu=(S;e; Qe +Tije; e uze,
= (Sij + Tij)ua(e; @ €))e,
= (Sij + Tij)ugeibia = (Sij + Tij)uje;

= Siju]'ei + Tijujei

13



=Su+ Tu = Tu + Su
The associative rules, as well as the zero-element rule (#2) are similarly established. The
annihilator tensor fulfils this role.
Rule 3. Multiplication by a scalar. This is established by the linearity of the transformation for
linearity for T stipulates that,
T(aa + fb) = aTa + BTb
Leta = b = u, then,
T(au + fu) = aTu + fTu
=(a+B)Tu
= ((e+B)T)u
Finally, scalar product between two tensors is defined. It naturally induces the concept of
magnitude:
ITII =VT:T
Higher-order tensors retain the same definition as second-order tensors. A fourth-order tensor
transforms a second order tensor (a member of a vector space) to a second order tensor (vector
space). A third order tensor transforms a vector to a second-order tensor (vector space), it also
transforms a second-order tensor to a vector. In any case, the fact that a tensor transforms from

a vector space to a vector space remains unchanged.

Additive Decompositions of Tensors

The definitions of the spherical tensor and the symmetric tensor induce two additive

decompositions of tensors.
Spherical & Deviatoric Parts
Every tensor can be decomposed into a spherical and deviatoric parts. The spherical part of a

tensor is obtained by dividing its trace by three and use the result to scale an identity tensor.

For a tensor S, the spherical part,

1 1
Sph S = (gtl" S)l = §Skk6ijei ® ej

and the deviatoric part is what remains after removing the spherical part:

14



1 1
devS =S - (gtr S)I = (Sij _§Skk6ij> €; ® ej
The traces,

1 1
tr(sph S) = <§tr S) trl = <§tr S> 3=1trS

1
tr(devS) = trS — <§trS)trI =trS—trS=0.
The deviatoric component has zero trace. It is traceless.

Symmetric and Skew Parts
We can also decompose a tensor S, into symmetrical and anti-symmetrical parts. An anti-
symmetric tensor, also called a skew tensor is defined as that which is the negative of its

transpose. Hence the symmetric part
1 T 1

and the skew part:

kw S = ! s—8T) = ! Sii—S

skw$ =5 (S —ST) == (5, — Sji)e: © ¢;
The transposes,

T 1 T b1 T TN\T
(symS)" = E(S-I_S) =§(S +(S")") = symS

T
(skw S)T = <% (S— ST)> = %(ST —(8HT) = —skw S

These results can be established from the component representation as well. However, we shall

opt for direct proofs anytime they are available. The proof from the components is left as an

exercise.

1 1
tr(sym S) = Etr( S+ST) = 3 (trS+ trS)

commutative property of the scalar product makes the trace of a transpose the same as the trace

of the tensor from which the transpose is obtained. It is easy to see, in the same way that the

trace of a skew tensor also vanishes: tr(skw S) = 0. The spherical part of a tensor is always

symmetric. This symmetry is induced by that of the identity tensor as there is only a scaling

between a spherical tensor and the identity. No judgement can be made on the deviatoric tensor

15



however. Its symmetry wholly depends on the original tensor from which the deviatoric part is
taken. If the latter is symmetric, so will the deviatoric part. If skew, so also will the deviatoric part.

It is is quite possible that the deviatoric tensor is neither symmetric nor skew.

Axial Vector of a Skew Tensor & the Vector Cross

The Triad. In this section we introduce the triad: a third order tensor that can be created by the
tensor product of three vectors. Just like the dyad, a triad is defined by its operation on a vector.
Given vectors a, b, ¢ the triad produces a dyad as follows:

@®b®c)v=(c-v)(a®b).

The fact that the familiar alternating symbol, e;;; are, for various combinations of its indices,

components of a tensor, now becomes obvious. It will be introduced shortly in a computation to

follow.

Recall that a skew tensor, the negative of its transpose, satisfies,

T=Te; ®e =-Te Qe

There two immediate consequences of this:

1. Foraskew tensor, T;; = —Tj;
The diagonal elements vanish; only three of the nine components are independent as the
others are either zero or negatives of one of the three.

2. Following the above, ALL information contained in the tensor can be made into a vector. Such
a vector exists for every antisymmetric tensor. It is called the Axial vector.

The converse of this is also true. Given any vector, we can construct a skew tensor based on the

three components of the vector. Such a vector is called the Vector Cross (tensor) of the vector.

The reason for such a name will become obvious shortly:

Given any vector u = u,e, we can form the vector cross tensor by this formula:

Q= (ux)=-Eu
where E = ¢;e; @ e; & e is the third order alternating tensor. (The operations of the triads,

as we have seen, work similarly to that of the dyad). In component form,
Qe Qe = (—ejre; Qe Q ey)(uge,)
= (enjei @ ¢ ® e;)(uqge,)

16



= eixje; Q €jUuabirq = eigjuge; & €;
Note: The result of the transformation of any vector v, by the Vector Cross of u is the same as
performing a vector product between u and v:
Qv = (—Eu)v

= (eiajuat; @ €;)(viey)

= €iqjUa Vi €0k

= CiqjUaVj€

=uxv
So that the effect of the operation of Q is the same as that of (u X) on the same vector. Hence
the name, vector cross.
Suppose we have been given a skew tensor,

Q;5e; ® e; = (uX) = eqjuqse; Q e
We want to find the components u, from the (;;s.
Clearly,
Qij = ejqjlUq
Multiplying both sides by e; j;, we obtain,
eijklij = €ijxeigjlUlq = —20kqlq = —2Ug

So that we can find the components of the dual vector from, u;, = — % e;jk{1;j; and if we are given

the vector u, we can find the vector cross from its components using, (;; = e;4Uq.

We can also define tensor products between objects other than vectors at this point. We can
now rely more on the component form of these objects to arrive at consistent definitions as
shown in the table below:

Giventensors T = T;;e; ® e;,S = S;pe; @ e, and vectorsu = u,e,, v = vpeg, the following

tensor products can be taken:

TQu Tijuqe; ® e Q e, (TQRQu)v Tijuqvge; Q €;0qp

= Tijuavaei ® ej = T(ll . V)

17



u®T Tijuqe, ® e; ® e; (u® T)v Tijuqvge, @ e;6jp =
Tijugvie, ® e, =u @ Tv
T®S TijSime ®e e ey, | (TRSu T &® Su
v(T®S) (T™V) ®S

The Cofactor of a Tensor

I The cofactor of an invertible tensor is defined as cof T = T = T T det T

Begin with a pair of linearly independent vectors u and v. Consider the parallelogram created by

these vectors and the perpendicular to the parallelogram plane. The vector area shown is given

R, linearity of tensor T =

by u X v and its direction is parallel to the shown normal. If the
two vectors are transformed by a tensor T, the transformed
vectors create another parallelogram vector given by Tu X Tv.
the cofactor provides the relationship between these two
vector areas:
Tu X Tv =T (u X v)

The cofactor maps a vector area created by u and v into the
vector area created by the transformed vectors Tu and Tv.

This transformation is bi-linear. For example, given a,f €

T(au + fv) X Tw = aTu X Tw + STv X Tw

=aT(uxw) + BT (uxw)
= T¢((au + Bv) x w)

The last equality coming from the linearity of cofactor tensor T, and the distributive property of

the vector product over addition.

In a deformation field, the changes in lengths, areas and volumes are highly variable — spatial and

even temporal functions. Only small neighborhoods transform this way in the limit. In that case,
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the elements of areas are also transformed by the cofactor of the same tensor that transforms
the element of length. If only elements of length are transformed by a tensorWe proceed now to

obtain the components of the cofactor: If T¢ = Tlﬁ-ei ® e;, then the inner product,
TC: (ei ® e]) = Tl(_:]
1
=e;-T¢j=e¢;- [TC (E €jmn€m X en>]
1
= Eejmnei - (Te,, x Tey)
In the expression, e; - (Te,, X Te,,) we seek the i*" component of Te,,, X Te,,.

1
Tij' = Eejmneiaﬁ (ea : Tem) (eﬁ ' Ten)

1
= E Ciap ejmnTamTﬁn
The cofactor,
c 1
T = EeiaﬁejmnTamTﬁn(ei X ej)

The inverse tensor,
T~ = (detT)'TT

_ (detT)™*
- 2

Second principal invariant of T is the trace of its cofactor, tr T®

€iapCimn TamTﬁn (ej b2 ei)

1
I,(T) = Eei(xﬁejmnTamTﬁn(ei ’ ej)

1

= E (6am6Bn — 8an 6,8m)TamTBn
1

= E (TrmTon — TanTam)
1

= E(tr2 T —tr T?)

The Eigenvalue Problem

Vectors and tensors exist independently of the reference frame we use to characterize them. The
values in the matrix part of a tensor only takes meaning from the coordinate frame whose basis

vectors are weighted by those values. We know that vectors have magnitudes and directions
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intrinsic to each vector. So do tensors; there are characteristic values that pertain to the tensor
that are not dependent on the coordinates to which we refer them. These are the eigen values
and eigenvectors of the tensor. In order to discuss these quantities, we pose the fundamental
eigenvalue problem:
Given that a second-order tensor transforms an input vector u to an output vector v; ordinarily,
we do not assume any relationship between u and v. The eigenvalue problem is: What if the
output vector is simply a scalar multiple of the input vector? To answer that question, we will
need to solve the problem:
Tu = Au
Where 4, if we can find it, is a scalar called eigenvalue, and u when it exists, is the corresponding
eigenvector.
Eigenvalues and eigenvectors are essentially the fundamental quantities that engineers need in
a typical tensor. Its physical interpretation is wide and diverse. From materials science where the
eigenvalues represent principal stresses while eigenvectors represent principal surfaces,
dynamics, where they are natural frequencies and mode shapes to electric circuits and several
other applications. The importance of the eigenvalue problem cannot be overemphasized.
Tu — Au = T;je;(e; - ex)ux — Auge;
= Tjjeu; — Au;e;
= (T;; — 26;;)uje; =0
Which is possible only if the coefficient determinant, |Tij - /16ij|, or det(T — AI) vanishes.

[(T — ADa, (T — ADb, (T — AD)c]

det(T — AI) = ab,c

[(T — ADa, (T — ADb, (T — Al)c]
= [Ta, Tb, Tc] — ([Aa, Tb, Tc] + [Ta, Ab, Tc] + [Ta, Tb, Ac]) + [Ta, Ab, Ac]
+ [Aa, Tb, Ac] + [Aa, Ab, Tc] — [Aa, Ab, Ac]
Leading to the characteristic equation,
[a,b,c]A3 — ([Ta,b,c] + [a, Tb, c] + [a,b, Tc])A? + ([Ta, Tb, c] + [a, Tb, Tc] + [Ta, b, Tc])1
— [Ta, Th, Tc] =0
Or,
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[Ta,b,c] + [a, Tb,c] + [a,b, Tc]

_ _ — 23 _ 2
det(T—AI) = 2 b, A
[Ta, Tb, c] + [a, Tb, Tc] + [Ta, b, Tc] 1 [Ta, Tb, Tc]
[a,b,c] [a,b, ]
=B -L(MAP+LMA-L(T) =0
[Ta,b,c] + [a, Tb, c] + [a, b, Tc]
L(T) =
[a,b,c]
_ [Ta, Tb,c] + [a, Tb, Tc] + [Ta, b, Tc] B .
12 (T) = [a, b, C] =trT
_ [Ta, Tb, Tc]
B ="0h

The selection of the linearly independent vectors a, b, ¢ is completely arbitrary. Consequently,
the Principal Invariants are independent of the choice of these vectors and are intrinsic to the

tensor T.

Tensors in Spectral Form

One consequence of the eigenvalue problem is the possibility to present tensors in spectral form.
The nine components of a regular tensor become six when the tensor is symmetric. In spectral
form, the tensor is reduced to the eigenvalues —a much easier form.
A very important result that enable the reduction to spectral form is the Caley-Hamilton’s
Theorem:
We now state without proof (See Dill for proof) the important CaleyHamilton theorem: Every
tensor satisfies its own characteristic equation. That is, the characteristic equation not only
applies to the eigenvalues but must be satisfied by the tensor T itself. This means,

T - LT?+LT—-LI=0
is also valid. This fact is used in continuum mechanics to obtain the spectral decompositiorof
important material and spatial tensors.
It is easy to show that when the tensor is symmetric, its three eigenvalues are all real. When they
are distinct, corresponding eigenvectors are orthogonal. It is therefore possible to create a basis

for the tensor with an orthonormal system based on the normalized eigenvectors. This leads to
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what is called a spectral decomposition of a symmetric tensor in terms of a coordinate system

formed by its eigenvectors:

3
T = Z Ai ni®ni
i=1

Where n; is the normalized eigenvector corresponding to the eigenvalue 4;.

The above spectral decomposition is a special case where the eigenbasis forms an Orthonormal
Basis. Clearly, all symmetric tensors are diagonalizable.

Multiplicity of roots, when it occurs robs this representation of its uniqueness because two or
more coefficients of the eigenbasis are now the same.

The uniqueness is recoverable by the ingenious device of eigenprojection.

Case 1: All Roots equal.
The three orthonormal eigenvectors in an ONB obviously constitutes an ldentity tensor 1. The

unique spectral representation therefore becomes

3 3
T = Z/ll ni®ni = Az ni®ni
i=1 i=1

since 4; = A, = A3 = Adin this case.
Case 2: Two Roots equal:
Aqunique while 1, = A3
In this case,
T=4;n;®n; + 1,(I - n;®n,;)
since 4, = A5 in this case.
The eigenspace of the tensor is made up of the projectors:
P; = n,;®n;
and
P, =1—n,®n,
The eigen projectors in all cases are based on the normalized eigenvectors of the tensor. They
constitute the eigenspace even in the case of repeated roots. They can be easily shown to be:
Idempotent: P; P; = P; (no sums)

Orthogonal: P; P; = O (the anihilator)
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Complete:}; P; = I (the identity)

Orthogonal Tensors

Given a pair of vectors a and b, an orthogonal tensor Q is said to be orthogonal if,
(Qa)-(Qb) =a-b
Specifically, we can allow a = b, so that
(Qa)-(Qa)=a-a
Or
lIQall = [lal|
In which case the mapping leaves the magnitude unaltered. Let q = Qa
(Qa)-(Qb)=q-Qb=a-b=b-a
By definition of the transpose, we have that,
q-Qb=b-Q"'q=b-Q"Qa=b-a
Clearly, QTQ = I. A condition necessary and sufficient for a tensor Q to be orthogonal is that Q
be invertible and its inverse equal to its transpose.
Upon noting that the determinant of a product is the product of the determinants and that
transposition does not alter a determinant, it is easy to conclude that,
det (Q"Q) = (det Q")(det Q) = (detQ)* =1
Which clearly shows that
(detQ) = £1
When the determinant of an or t h ergperrodhbgortdle ns or
A rotationis a proper orthogonal tensor while a reflection is not.
Let Q be a rotation. For any pair of vectors u, v show that Q(u X v) = (Qu) X (Qv)
This question is the same as showing that the cofactor of Q is Q itself. That is that a rotation is
self cofactor. We can write that
T(u X v) = (Qu) x (Qv)
where
T = cof(Q) = det(Q) Q"
Now that Q is a rotation, det(Q) = 1, and
QT=QH'=@QH"=Q
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This implies that T = Q and consequently,

Q(u xv) = (Qu) x (Qv)
For a proper orthogonal tensor Q, show that the eigenvalue equation always yields an eigenvalue
of +1. This means that there is always a solution for the equation,

Qu=u
For any invertible tensor,
S¢ = (detS)S~T
For a proper orthogonal tensor Q, det Q = 1. It therefore follows that,
Q¢ =(detQ)Q"=Q " =Q
It is easily shown that trQ® = I,(Q)
Characteristic equation for Q is,
det(Q—AD) =23 —-22Q, +1Q,— Q3 =0

Or,

AB =220, +2Q,—1=0
Which is obviously satisfied by A = 1.

Examples

Consider an arbitrary tensor v,

((Te) @ e;) v=(Te)v; =Tv

Sothat, (Te;)) @ e; =T
A more direct approach is to observe that,
(Te)) ®e; =T(e; ®e;) =TI
e, ® (TTe) =(e;@T'e)=(e;Qe) T=IT=T
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e 1le 1
1 1 —TV

T(2 = = ——=
@) = 2w = 21l 2

In fact, for any non-zero scalar a,
e 1
T(av) = =Ty
lavl] «

It is clearly a nonlinear transformation.

For any scalar «,
T(av) = ||lav||e; = aTv

Now to a second test of linearity: How does it transform u + v?

Tu+v)=|lu+vle;=y@+v) (u+v)e; # Tu+Tv

The transformation is not linear, hence not a tensor.

a T(au+ v) = (a- (au+ pv))e; = ((ea-u) + f(a-v))e,
=a(a-u)e; +B(a-v)e; =aTu + BTv
The transformation is linear and thus a tensor since it is also a transformation whose
input and output are both vectors.
b Tv=axv= (ax)v

T = (a x) this is the Vector Cross of the vector a.This is a tensor whose
component form is:
(ax) = e;jraje; ® ey. Itis a transformation of a vector to a vector. Given a, § €
R, and u,v € E, its linearity is established because,
(ax)(au+ pv) = e;jra;(e; ® e;)(au+ fv)
= eijra;e[(au + Bv) - e;]
= ae;jxa;(e; ® e )u + fe;jrai(e; ® ex)v

= aTu + Tv
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The tensor we seek is in the form,

T,y T, Tiz|[€1
[e;, e5,e3] @ |Tor Toy Tos||€2
T3y T3, Tsslles

It operates on the vectors e4, e, and e; to obtain e; + 2e, + 3e;, —5e; + 4e3 and
3e; — e, — ez respectively. Applying Tv = T;;v;e;, we have, forv = e,
Te, = (Ty1v1 + Tipv; + Tizvs)ey + (To1vy + Topv; + Tozvs)e,
+ (T51v1 + T332, + T33v3)e€3
= (T11(1) + T12(0) + Ty3(0))e; + (To1 (1) + T2 (0) + T53(0) e,
+ (T31(1) + T32(0) + T33(0))es = Tys ey + Trye; + Taq€3
= e; + 2e, + 3e;
So that T;; =1,T,; = 2,T3; = 3. We avoid unnecessary computation in the
following by observing that, for v=e,, v; = 0,v, =1 and v3; = 0. The lengthy
expression reduces to:
Te, = Ty,e; + T,e, + T35 = —5e; + 4e;
SothatTy, = =5,T,, = 0,T3, = 4.
Lastly, like the above, for v=e3, v; = 0,v, = 0and v; = 1.
Te; = Tjz3e; + Trze, +T33e3 = 3e; — e, —e;

Sothat Ty3 = 3,T,3 = —1,T33 = —1. The tensor we seek is,

1 -5 31][¢€
e, ese3] @2 0 —1][e:
3 4 -—1ll€s3
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B The reverse transformation will do the opposite: It will take the vectors, e; + 2e, +
3e;, —5e; + 4e; and 2e; — e, — e3 and produce e, e, and e; respectively. By
inverting the tensor, we obtain,

4 3 17
25 25 5].e
1 7 1||."
T 1 =[e,e,e —-—— —— Zl|e
[ 1, %2 3] ® 25 25 5 |:e§]
8 19 2
25 25 5
C T (e, + 2e, + 3e;3)

= (Ti1'vy + TRt v, + Tl va)ey + (To' vy + Tl v, + Toglvs)e,

+ (Ts vy + T35 vy + Ta3'vs)e;
(4 3 1 1 7 1
= (E(l) +E(2) +§(3)>e1 + <—£(1) —g(z) +§(3)> e,

8 19 2 _
+ (gm—gm +§<3))e3 =e,

T~1(—5e, + 4e3)
= (Ti'vy + T5tv, + T3 va)ey + (Tot vy + Tog' v, + Togtvs)e,

+ (T31'vs + T33! vz + Tiz'vs)es
(4 c 3 1 A 1 c 7 1 4
—<£(— )+£(0)+§( ))e1+<—£(— )—g(o)‘l'g( ))ez
8 19 2
+<£(—5)—£(0)+§(4)>93 =€

T™'(2e; —e, —e3)
= (Tii'vy + TR v, + T va)ey + (To'vy + Tl v, + Toglvs)e,

+ (T51'vy + T3 v, + T33'vs) ey

_ (2 2 > 1 ! 1 ! 2 ! 1 ! 1
—<g( )+g(— )+§(— )>e1+<—£( )—g(— )+§(— ))ez

8 19 2 ~
+ (E @)= -1+ g(—1)>e3 = e
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Using the fact that the scalar product is commutative, we may see it more clearly
by observing that,
u@a-vy=ulv-a)=(u®v)a

The tensor we seek is simply the dyad created by vectors u and v.

The proof is to show that both sides produce the same result when they act on the
same vector. For arbitrary vector y, observing that (v - w) is scalar, the RHS is
(u®x)(v-wly =u(x-y)(v-w)
and the LHS applied to the same vector, becomes:
WRV)(WRX)y=u®V)[wx-y)]=ulv-w)(x-y)
Which is obviously the result from the RHS also.
It is easy to see, by a repeated application of this result, that the multiple product

of dyads like
(u; @ v)(u; @ vy) ... (U, @ vy,)

= (ul X Vn)(vl : uz) (Vn—l ’ un)

The product of the given equation with the vector vimmediately yields,
[(SCu) x]v = S(u x)STv
= ((cof S)u x)v = S(u x STv)
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QuXx Qv=(wX u) X (w X V)

=[(wXx u)- vlw—[(w X u) - wlv
=lw: UxV)]w=(w w)(ux v)
But by definition, the cofactor must satisfy,
Qux Qv= Q(ux v)

which compared with the previous equation yields the desired result that

QA=(0Q
e LHS can written

[(Su) X] = e;jx(Su);e; @ ey

wh e 8= éejabeﬁcdsacsbd e®e;so that

1 1
Su = (E ejabeﬂcdSaCdeej & eﬁ) (umem) = Eejabeﬂcdsacsbdejdﬁmum
= 5 €jab eﬁcduﬁsacsbdej

Consequently,

[(S“w) x] =

Eeijkejabeﬁcduﬁsacsbdei X ey

1
= Eeﬁcd(6ka6ib — Okb0ia)UpSacSpaei Q ey

1
= zeﬁcduﬁ (SkeSta — SicSka)er & ey

1
= Eeﬁcduﬁskcsidei K e, — Eeﬂcduﬂsicskdei K ey

1
= zeBcduBSchidei K e + EeﬁdcuBSicSkdei X ey

= epcalipSkcSia€i @ ey
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On the RHS
(ux)s™ = (eaﬁyuﬁ’ea & ey)(skiei ® ex) = eupyUpSiy€q & €.
We can therefore write,
S(u x)ST = (S;-e; ® e,)(eqp usSkyea ® ) = enp, UsSiaSkye; & ey
whi cher-ajy>ci s the same as the LHS
[(SCu) x] = S(u x)ST

as required.

By definition,
S¢ = (detS)ST
We are to prove that,
[(Su) x] = S¢(u x)S™! = (detS)S™T(u x)S~?!
or that,
ST[(Su) x] = (u x)(detS)S™! = (u x)(§)T
On the RHS, the ij component of u X is
(U X);j = ejqjly
which is exactly the same as writing, (u X) = e;u,e; @ e; in the invariant form.
We now turn to the LHS;
[(Su) X] = ejqi (Su),e; @ e = e Sajuje; €y
Now, S = S;ze; ® eg so that its transpose, ST = Sipep @ e; so that
ST[(Su) X] = €101 Se;Sipuj(ep @ €;)(e; ® e;)
= e1axSa;Sipuibu(es @ ey)
= ejaiSajSiuj(e; @ ey)
= eparSajSpittj(€; ® ey)
= (ux)(§9"

S¢ =det(S) ST
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Consequently,

S=¢ = (detS) (S T)"! = (detS)~1ST

(aS)¢ = (det(aS))(aS)~T
= (a3 det(S))a~ 1S T
= (a? det(S))S~T

— aZsC

(SHe = det(S"H(SHT
= (detS)~'ST

First note that the determinant of the product of a tensor C with a scalar « is,
detaC = e;j, (aCiy)(aCj;)(aCys) = a® detC
The inverse of tensor S,
S~ = (detS)~1(S°T)
Let the scalar @ = detS. We can see clearly that,
S¢=aST
Taking the determinant of this equation, we have,
detS¢ = a®detS™! = a3 detS™?
as the transpose operation has no effect on the value of a determinant. Noting that
the determinant of an inverse is the inverse of the determinant, we have,

o3
detS¢ = a3det(S71) = —= (detS)?
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If Q is proper orthogonal, thendetQ = 1
cof @ = (detQQ T =+1(QN'=1(QH'=Q
L,(Q) = 1,(Q°)
The second principal invariant for any tensor is equal to the first principal invariant
of its co-factor. But we find here that Q = Q°F. It follows that the first two invariants

of a proper orthogonal tensor are equal. The third invariant, I5(Q) = detQ = 1. All

essential information on an orthogonal tensor is known once we know its trace!

Let q = Qa. By the definition of the transpose of a tensor, we have that,
q-Qb=b-Q"q=b-Q"Qa=b-a

Clearly, QTQ = I which makes the transpose the same as the inverse tensor.

A condition necessary and sufficient for a tensor Q to be orthogonal is that Q be

invertible and its inverse is equal to its transpose.

The characteristic equation for S can be written as,

83 —1152 +Izs_13l - 0

Multiplying by the inverse, S™%, we have,
S2—LS+LI-S1t=0

from which the result,
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s-1 (S2 — IS + L)

- detS

immediately follows.

Take the trace of the given equation,
tr T = tr T? — I, (T)1,(T) + 31,(T)
But recall that tr T = I,(T). It therefore follows that,
21,(T) = I?(T) —tr T?
=tr’T — tr T?

So that,

1
L(T) = 7 (tr’T —trT?)

For any three linearly independent vectors, the trace of a tensor T

[Tg1,82 831 + [81, T82,83] + [81, 82, T8s]

trT = L(T) =

(81,82, 83]

Replacing g, by Tg in the above equation, we have,

tr T [Tgy, 82, 83] = [T?81, 82,831 + [Tg1, T8, 83] + [T81, 82, T83]

Or, upon rearrangement,

[Tg1, T8z 83] + [Tg1, 82, Tg3] = tr T [Tgy, 82, 83] — [T?81, 82, 83]
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But, the second Invariant,

[Tg1, Tg2, 831 + [81, T8>, Tgs] + [Tg1, 82, Tgs]

() = (81,82, 8]
_uT [Tg1, 82, 85] — [T?g1, 82 83] + [81, T8>, Tgs]
(81,82, 8]
_ tr T[Tgy, 82, 83] — [T?81, 82,85 + 81 T°(g, X g3)
(81,82, 8]
_ [(tr T)Tgy, 82, 85] — [T?81,82,83] + [T'81, 82, 85]
(81,82 8]

so that,
[(12(T)Dg1, 82, 83] = [(tr T)Tgy, 82, 831 — [T?81, 82, 83] + [T g1, 82, 85]
From which we can write that
L(T)I= (trT)T — T? + TT
or,

T¢ = (T? = I,(T)T + L,(T)DT

Note that T =symT + skwT,and TT = sym T — skw T . Also note that the

inner product between a skew and a symmetric tensor vanishes. Consequently,
S:T= S:(symT + skw T)
= S:symT + S:skwT
= S:symT
=S TT
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W:T = W:(symT + skw T)
= WisymT + W:skwT
= W:skwT = W:(symT —TT) = —W:TT

To show that S: W = 0. Observe that, in component form, S = Sl-j(el- (0] ej), W =
Wop(eq ® ep).
STW = S;;Wyp(e; ® e;)(e, ® ep)
= SijWagp (e ® €g)8ic = SyWige; ® ep
tr(STW) = S;;Woptr(ej ® ep)diy = SijWapbipbia

=5;iWij = S:W

= S5Wi; = =5iWj; = =5;;Wij = = S: W
Which vanishes because it is equal to the negative of itself.

S:skwT =0

Because skw T is a skew tensor. Hence,

S:skwT=S:W=0

In component form, S = §;;e; ® e;, T = T;;e; Q e;.

ST = SiTap(e: @ €;)(ea ® €5)
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tr(STTT) = S;;Top6i56j0 = SiTji = tr(ST)

Similar computations lead to the conclusion that

tr(ST) = tr(TS) = tr(STTT) = tr(TTST)

el

Clearly,sym(S) = %(S + ST

It also follows that,

1
ATsym(S)A = EAT(S +SHA

1
== (ATSA + ATSTA)
But sym(ATSA) = %(ATSA + ATSTA).

Hencesym(ATSA) = ATsym(S)A

a wxu)Xx(wxv)=[(wxu) vlw—[(wxu) wlv

=[(wXxu) - vlw

=[(uxv)- wlw

= (wQw)(uxv)

Consequently
[e,exuexv]=e-[(exu) X (exvV)]

=e-[(e®@e)(uxv)]
=(uxv) - (e®e)e
=(uxv) -e=[euvV]

making use of the symmetry ofe & e).
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From the given result,
[(uxv),(vxw),(wxu)]=—-(uxv) (Wxv)X((wxu)
=—(uxv)-(WQRw)(vxu)
= (u x v)((w -u X v)w)

= [u, v, w]?
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If T is not singular, if Tu and Tv are also linearly dependent, then 3, and 8 both

real such that aTu + STv = 0. But u and v are linearly independent. This means
that au + v # o.

aTu+ BTv = T(au + fv) = o.
This means that au + v = 0. This states that set of linearly independent vectors

is linearly dependent! That is a contradiction!

Alternative Proof

If T is not singular, then its determinant exists and is not equal to zero. Therefore
the cofactor, T =T TdetT # 0 also exists and is non-zero. The linear
independence of u and v means that the parallelogram formed by them has a non-
trivial area u X v # 0. Now, the parallelogram formed by Tu and Tv is also non
zero because,

TuXTv=T(uxv)#0

Hence Tu and Tv are also linearly independent.




If T is not singular, then its determinant exists and is not equal to zero. Therefore,

[Tu, Tv, Tw]

detT =
[u,v,w]
Consequently, [Tu, Tv,Tw] # 0. Which shows that Tu, Tv and Tw are also

linearly independent.

Alternative Proof:
If T is not singular, if Tu, Tv and Tw are also linearly dependent, then 3a, 8 and
y all real such that aTu+ fTv+yTw =o0. But u,v and w are linearly
independent. This means that au + v + yw # o.

aTu + fTv+ yTw = T(au + fv+yw) = o.
This means that au + fv + yw = 0. This states that set of linearly independent

vectors is linearly dependent! That is a contradiction!

TBWY

For any invertible tensor T,
T
LT
detT
det(I + w x) = detI + det(w X) + (w X): 1+ I¢: (w X)
=1+0+|wl*+0

(I + (w X))C = [(1 + tr(w x)I — (0 X)T + (@ %)€]
=1+ ((,0 X) + o &Q w
so that

1 TH+oXx4+o Q@ w
(I+(wx)) = el
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Note that (a @ b)¢ = 0 and that det(a @ b) = 0 so that
det(S +a ® b) = det(S) + tr(S°(b ® a))
=det(S)(1+a-STh)
= det(S) (1 +b - S 1a)

Substituting the identity tensor for S in the given expression, we have,
A+ =T +I1+@tuT—-trTI-3TT —ItrT+TT + T7
=T+1+2uTI—trTI-TT
=T +I(1+trT)—TT
I+u®vV)=uV)+I1+tru®v))—(u@v)T
=0+I14+u-v)—-vQu
=I1l+u-v)—-vQu

Given basis vectors, g1, 8,, 83, the third invariant of w X,

I3(w X) = det(w %)
_ [0 X g1, 0 X g3, 0 X gs5]
(81,82, 8]
_ [ X g1, (w X)°(g2 X 83)]
(81,82, 8]
_ [0 X g1, (0 @ w)(g, X g3)]
(81,82, 8]
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upon noting that the cofactor, (w X)¢ = (0 Q w).
And since (o @ w) is symmetric, the numerator above is,
(wXg) (0@ w)(g, X g83) =(82%X83) (0wQ w)(wxgy)
=(82%83) [0 (wxg)]w=0
so that I;(w X) = det(w X) = 0.
Show that the trace of the cofactor, tr(w X)¢ = ||w||?
First note that (w X)¢ = (w @ w). Therefore,
tr(w X)¢ = tr(w Q w)

= 0 o= w]?

S¢ =det(S)S7T

So that,
Sc¢ = cof(cof S) = (detS¢)(S9)T
= (detS)2[(S9)"]"
= (detS)?[(detS)'ST]T
= (detS)*(detS)~'S
= (detS)S
as required

e
(SH¢ = det(SH(SHT
= (detS)~1ST
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(aS)¢ = (det(aS))(aS) T
= (a3 det(S))a~1S7T
= (a?det(S))S™T = a?S¢

Given independent vectors u and v, consider the product,
((wx)u) x ((wXx)v) = (0% u) X (@ X V)
=[(w X u) vlw - [(w X u) - w]v
=[lw:- (uxv)w
= (0 @ w)(ux v)
Showing that the cofactor of w X is the dyad & w.

T8

SinceS = (S2 - ,S+ LDT,letS>S+T =

T
(S+T) = {(s +T2 —tr(S+T)(S+T) + % [tr2(S + T) — tr(S + T)Z]l}

= {(s +T)2 + (S +T)? + TS + ST — tr(S)S — tr(T)T — tr(S)T
—tr(T)S

+ % [tr(S) + tr(T) + 2tr(S)tr(T) — tr2(S) — tr2(T) — tr(TS)

_ tr(ST)]}T
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1 T
= (52— r(9)5 + 5 [%(S) ~ tr()?11)

T
+ (TZ —tr(T)T + % [tr?(T) — tr(T)Z]l) + TTST + STTT
— tr(T)ST — tr(S)TT + [tr(S)tr(T) — tr(ST]I
=S+ T+ TTST+ STTT — tr(T)ST — tr(S)TT
+ [tr(S)tr(T) — tr(ST)]I

Given the set a, b, ¢ of linearly independent vectors, the determinant of the sum,
det(S+ T)
_((s+Ma,(S+ b, (S + T)c)

[a,b,c]

[Sa, Sb, Tc] + [Sa, Th, Sc] + [Ta, Sb, Sc|

=detS+ detT + [ab.d
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= detS + det T + tr(TST) + tr(ST*T)
= detS + det T + tr(S°TT) + tr(T°ST)

If T is not singular, then its determinant exists and is not equal to zero. Therefore,

[Tu, Tv, Tw]

detT =
€ [u,v,w]

Consequently, [Tu, Tv, Tw] # 0. Which shows that Tu, Tv and Tw are also

linearly independent.

First consider the matrix ("I‘, Pil{) Its inverse is obtained by solving the matrix

equation,
¢ DG #)=0 V)
which yields,
AT+ BV =1
—AU+BF!'=0 = B = AUF
so that,

AT+ AUFV = A(T + UFV) =1
= A = (T + UFV)!
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But A = T~ — BVT ! substituting in the second equation,
from which we can now write that (T~ — BVT 1)U = BF ! so that
B =T 'U(F! +VT'U)~!
A=T'—BVT'=T'-T'UF T+ VT U)vT!
Finally A= (T+ UFV)"! =T ! =T 'U(F~! + VT~'U)"'VT ! as required
In the special case when F is the identity tensor, we have,

(T+UV)"t=T1—T1U(l+ VT 1U)~lVT!

Writing the tensor and vector in component forms, we have

Tu =T;(e; ® e )uge, = u = Auge;
So that,
Tu — Au = Tj;e;(e; - e Ju, — Aue;
= Tjje;u; — Au;e;

= (T,_] e Aé'l])u]el =0

Which is possible only if the coefficient determinant, |T;; — /16l-j| vanishes.
Expanding, we find that,
—T31T55T13 + T15T23T31 + T13T31T32 — T11T23T32 — T12T21T33 + T11T22T33
+ T12T124 — T11Top A + T13T314 + T23T334 — T13T334 — T35 T334
+ Ty A% + Ty A% + T334% — 23
= —T31T23T13 + T12T23T31 + T13T31T32 — T11T23T32 — T12T21T33 + T11T22T33
+ (T12Tiz — T1aTop + TisTay + TasTay — T13Tss — To2T53)
+ (Tyq + Typ + T33)A2 =23 =0
Or, 23 — A2 + ,A — I; = 0, as required.
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The characteristic equation, det(AI —T) =0 immediately implies that
[fa — Ta,Ab — Tbh,Ac — Tc] = 0.

Expanding the scalar triple product, we have
[a,b,c]A3 — ([Ta,b,c] + [a, Tb,c] + [a, b, Tc])A?
+ ([Ta, Tb,c] + [a, Tb, Tc] + [Ta, b, Tc])A — [Ta, Tb, Tc] = 0
From which we can see that,

[Ta,b,c] + [a, Tb,c] + [a, b, Tc]

L,(T) =

[a,b,c]
_ [Ta, Tb,c] + [a, Tb, Tc] + [Ta, b, Tc]
LL(T) = ab,c ,and
[Ta, Tb, Tc]
I(T) = —F/———=—

[a, b, c]

Assuming we have carefully chosen [a, b, c] # 0.

= [Aa, Ab, Ac] _ Aa - Ab X Ac _ Aa-A°(b X ¢)
[a, b, c] [a,b,c] [a,b,c]
(bxc)-ATAa (bxc)-A'detAT Aa
" lbd @b,
= det AT (bxc)-A'Aa = det AT
[a,b,c]

‘ upon noting that ATAa = Ia = a.
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[Aa,Ab,Ac]

Given that det A = , then
[a,b,c]
[aAa, aAb, aAc] , [Aa, Ab, Ac] 5
detaA = =a = a° detA
[a,b,c] [a,b,c]

T:S = tr(TTS) = tr(TST)

LetS =1;
T:I = tr(TTD) = tr(TI)
= tr(T) = [,(T)

a In full component form, a skew tensor W can be written as:
W =1W;e; & e;
Once a tensor is in component form, its transpose is a reversal of its dyad
Consequently,
Wi=W;e;Q@e; =W;e;, Qe =—-W;e; Qe
The lastequality arising from the fact that the transpose of a skew tensor
opposite. The middle equality is the allowable reversal of roles for dul
variables. We can therefore write that,
Wie; @ e +Wie;, @e = (W +W;e;®e =0
Which, taken component by component medttjs = —W;;. In particular,
Wy =W =0,W,, = =Wy, =0,and W33 = —W33 =0

The trace oW is
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trWw=W;e; e = Wij5ij =Wy =Wy + Wy + W3 = 0.

Or more elegantly:

trW=LW=LWl=-LW=0
The second equality because the trace operation does not change with
transposing. The third equation from the fact that the transpose of a skew tensor
is its opposite. The result all comes out on one line with no appeal to components.
Lastly, recall that trace is a linear operation. Hence,

trw=trwWl = —trw=20
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First note that if T is invertible, the independence of the vectors u and v implies

the independence of vectors Tu and Tv. Consequently, we can define the non-
vanishing
n= TuXxTv+0.
It follows that n must be on the perpendicular line to both Tu and Tv. Therefore,
n-Tu=n-Tv=0.
We can also take a transpose and write,
u-TTn=v-TTn=0
Showing that the vector TTn is perpendicular to both u and v. It follows that
3 a €R such that
TTn = a(u xv)
Therefore, TT(Tu X Tv) = a(u x v).
Let w = u X v so that u, v and w are linearly independent, then we can take a

scalar product of the above equation and obtain,



w-TT(TuxTv) = a(u X v-w)
The LHS is also Tw:(Tu X Tv) = TuX Tv:-Tw. In the equation, Tu X
Tv:- Tw = a(u X v-w), itis clear that
a =detT
We have that, Tu X Tv = T~ T det T (u X v). And therefore, we have that,
TuxTv=T TdetT (uxv)=T(uxv).

We do this by first establishing the fact that the LHS is completely antisymmetric

in a, § and y. We note that the indices i, j and k are dummy and therefore,

€ijklialipThy = —ekjiTialjpThy = —ekjiTkyTiaTjip = —€ijkTiyTkaTjp
Showing that a simple swap of @ and y changes the sign. This is similarly true for
the other pairs in the lower symbols. Thus we establish anti-symmetry in a, § and
Y.
Noting that both sides of

€ijk liaTjgTiy = €qpy detT

take the same values as the determinant of T when «, [ and y are equal to 1, 2
and 3 respectively. The arrangement of the indices makes this value positive or
negative in the same antisymmetric way. This completes the proof

eijkTia’I}BTky = eaﬁy detT

To prove that Q is a rotation, first observe that,

Q' = Qe+, Qe +5H:Re3)(e; 0% +e, R ++e3 D &)
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=508+ R+ Q& =1

Furthermore,

detQ = [Qey, Qe,, Qes] = [§1,8,,83] =1

since the set {§,, &,, &5} is orthonormal.

We have already seen that each coordinate vector in {e;,e,, e3} rotates to
&1, &2, Esrespectively because, Qe; = (§; ®e; +§ ®e, +§; Qezle; =,

similarly, Qe, = &, and Qe; = &;.

(U X)=ejyjUqe; ® e;

0 —Us U, €4
= [81,82,83] ® [ Us 0 _ull [ezl

—U, Uuq 0 €3
Uq sin § cos a
From the figure, (u2> = (sinﬁ sin a), so that
Us cosf
0 —cosf sinfsina 1€,
(uX)=1le;e,es;]® [ cosf 0 —sin S cos a] [ezl
—sinfsina sinf cosa 0 €3
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If T = Al then,
u-Tv=Au-Iv=2A(u-v) =0
from orthogonality of u, v. Now suppose u - Tv = 0. Then, by the definition of the
transpose,
u-Tv=v-TTu=0
We are given that u is orthogonal to v. This can only be compatible with this scalar

product if TTu is parallel to u. This happens only if T is a spherical tensor. That is,

T = AL

Using the given relationship,

(w1 ) (0, X) — (0 X) (@ X)
= (0 0D —w, @ w; — (0, - W)+ w; @ W,
=0; Qw; —w; ¥ w,
Clearly, W;W, — W, W, = w; Q w; — ®w; & w,.
The skew tensor,
(@1 X @;) X) = —ejapesji(w1) (W) eq @ eg
= (8ak0p; — 8ajOpr )(w1)j(wr)ker @ eg
= (wl)ﬁ(wz)aea X €p — (w1)a(w2)ﬂea ® €p

=w2®w1_w1®w2

=W, W, — W,W,
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For the eigenbasis, {y;} we have y; - y; = §;;. The components of A are evaluated

as,

3
Aji =v; - (Ay) = A4y Vi = zli(sij =v; - (ATy;)

=1

We can therefore write

3 3
A=4,y;,Qv; = Zli&jvi Rvy; = ZAiYi RV
i=1 i=1

in which all the off-diagonal terms vanish.

The inverse of the product TS contracted with TS yields the unit vector
(TS) ' TS =1

Observe that ! T1 TS =S"1IS=L

It follows immediately that (TS)™* = S™1 T1.

Consider vectors u and v.
T(uxv) = TuxTv
SE[T°(u x v)] = S [Tu X Tv]
= STu X STv = (ST)“(u X v)
showing that (ST)¢ = S°T¢
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T — I in the given identity and noting that the unit tensor is self cofactor =
det(S + 1) = detS + tr(1ST) + tr(S°I) + detI
= detS + tr(S¢) +tr(S) + 1
= detS+detStr(SH) +trS+1

The characteristic equation for S is,

Sv =Av
where 1 is the eigenvalue and v the eigenvector. But S = BTB ! substituting, we
have,
BTB lv = Av
o) that
TB lv=2AB"1v

If we define v; = B~1v, we obtain,

Tv, = Avy
yielding the same characteristic equation as well as eigenvalues and principal

invariants as Sv = Av

Tou®v,thenT¢=0and TT = v ® uand det(u @ v) = 0.
det(S+u®v) =detS+ 0+ tr((v®u)S®) + 0
=detS+ (u® v):S°
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For this tensor, I; = u - v = 0 on account of u being perpendicular to v. We

now examine the other two invariants:
I,

_[(u®wv)a, (u®v)b,c] + [a, (u® V)b, (u® v)c] + [(u® v)a,b, (u ® v)c]
B [a,b,c]

For linearly independent vectors a, b and c. Clearly,

_[(v-a)u,(v-b)u,c]+[a (v-b)u,(v-cu] + [(v-a)ub,(v-cu] .
B [a,b, c] B

on the collinearity of two vectors in each triple product.

_me9s @l mwd K- on s Winly-on
- [a' b' C] B [a, b, C] -

The latter being the triple product of three parallel vectors. Hence we have a case

I

I

of a tensor with three principal invariants vanishing. The characteristic equation
becomes,

B—LAP+LA+;=23=0
Yielding three equal roots of zero. u @ v is thus a non-zero tensor with zero

eigenvalues.

(uX) (v X) = e;jujeqp,vp (e; @ ey)(e, ® e)

= eijitjerpy Vs (€1 ® ey)
= (8ip8jy — iy 0 )ujvp (e @ ey
= uv;(e; ® e;) —uvj(e; ® ;)

=vQ@®u— (u- v)l



Since tr I = 3, the trace of this tensor is —2(u - v)

In the above we have shown that (uX)(v)(wx)=[v® (uxw)— (u-

V)W X]
Because the vector cross is traceless, the trace of [(u - v)w X] = 0. The trace of
the first term, v @ (u X w) is obviously the same as —[u, v, w] which completes

the proof.

The tensor (u X) = —ejmaU,€ ® ey, similarly, (vX) = —eqp,v,€, ® €z and

(W X) = —e;jpwie; & e;. Clearly,
WXV X)W X) = —€pmneapyeijitinvywi(e; ® en) (e, ® eg)(e; ® €))
= —eqpyCrmneijkUnVy Wi (€ ® €;)8mapi
= —emiyermneijrinvywi(e; ® €;)
= (6u8yn — 8inby1)€ijrunvy wi(e; ® €))
= e jUnVawi(€; ® €;) — ejpuivwi(e; @ e))
= e Unawi(€; ® €)) — ejruivwi(e; @ e))

=[v® (uxw)—(u-v)wXx]
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uxyv= €ijkUjVk €;
((ux V) X) = egipeijuivee, @ ep

= —(8ia0kp — Skabip Jujvie, ® ep

= (—uqvp + ugv, e, ® ep
=vRQu—u®v

In the expression,
I=aca®b+ fbR®c+yc®a
Take a product on the right with vector a,
Ia= ca(b- a)+ Bb(c- a)+yc(a- a)
>a(l—a(b-a))= Bb(c- a)+yc(a- a)

_ pb(c- a) N yc(a- a)
~ 1—a(b- a) (1-a(b- a))

So that this expression enables us to write a in terms of b and c.

STW = 5;Wap(e; @ e;)(eq ® eg)
= Sl-jWaﬁej ® e35ia

S:W =trSTw
= SijWapbjpbia = SijWyj
= —S;Wj; =0
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Since all inner products S: W = 0. But,
SijWij = =SyjWi = =S;Wi;

So that (Sl-j = Sji)Wij =0 = §;; = §j; Hence, S is symmetric.

Let us refer each vector to an ONB, a = a;e;, b = a;e;, and ¢ = ¢ ey. Hence,

[T(aiei), bjej, Ckek] AF [aiei,T(bjej), Ckek] + [aiei, bjej,T(Ckek)]

L(T) =tr(T) = [a;e;, bje;j, cie]

_ a;bic([Te;, e, €] + [e;, Tej, ex] + [e;, €, Tex])
aibjck[ei, e]-, ek]

But [Te;, e, e,] + [e;, Te;, ex] + [e;, €, Tex] = Tyqe;jx. We have that

a;b;c, Ty ;i
L(T) = W = Tp
a;D;CrCijk

Which is obviously independent of the choice of a,b and c.

[Tei e, e] = (Tap(ea ® eg)e;) - (eiyey) = Tapbipbayeivy = TaiCaji

Similarly, we have that [ei,Tej, ek] = Tgjeipr and [ei, ej,Tek] = Tyxeijy- Expanding each
term, we have,

Taieqjk = T1i€1jk + T2j€2jk + Taxesjik

Tgjeigrk = T1jeirk + Tzjeiak + T3j€i3k

Tyxeijy = TikeijitTaxeijz+Tsrei53
Select {i,j,k} as any combination of the possible values of 1,2,3, each time, the result

is, Tai€aji + Tgjeipk + Tyre€ijy = Taaliji Using the expansion above.
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Let us refer each vector to an ONB, a = a;e;, b = a;e;, and ¢ = ¢ ey. Hence,

[Ta, Tb,c] + [a, Tbh, Tc] + [Ta, b, Tc]
[a,b, ]

_ [T(aie)), T(bje)), crex] + [aie;, T(bje;), T(crer)] + [T(ae), ajej, T(crer)]
[aiei, bjej, ckek]

L(T) =

a;bjc([Te;, Tej, ex] + [e;, Tej, Tey| + [Te;, e, Tey])

aibjck [ei, ej, ek]

a;bjcy ((Tc(ei xej)-e)+ (ei - T¢(e; x ek)) + (T(ex x €) - ej))

aibjck [ei, ej, ek]

- abjci([ei e, TTe, ] + [TTe;, e, €] + [e;, TTe;, ex])
aibjck[ei, ej, ek]

Where we used the fact that for vectors u, v, the product Tu X Tv = T(u X v) followed by
the definition of the transpose of a tensor. But [e;e;, TTe;] +[e; TTej, e;] +
[e;, e;, TTey] = Tgqe;jx. We therefore have that

a;bjckTgeeiji
L(T) =————=TF, = tr(T°)
2 aibjckeijk aa

Which is obviously independent of the choice of a,b and c.

[Ta, Th, Tc]
[a,b,c]

13(T) =

Let us refer each vector to an ONB, a = a;e;, b = bje;, and ¢ = ¢, e. Hence,

[T(aiei), T(b]e]), T(ckek)] _ aibjck [Tei, Tej, Tek]
[a,b,c] €123 aibjck

I3(T) =
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Writing T = Type, ® eg and substituting for each occurrence one by one,

aibjck [Taﬁ(ea ® e[;)ei, Te]', Tek] _ aibjck[Taﬁea6ﬁi, Tej, Tek]

I3 (T) =
elZBaibjck 9123aibjck

_ aibjck[Taiea, TﬁjeB,Tykey] _ aibjckTaiTﬁjTyk[ea, eB, ey] _ aibjckTaiTﬁjTykeaﬁy
el-jkaibjck el-jkaibjck el-jkaibjck

a;bjciTa1TpoTy3€0py €k
= =T, Ts,T,z€ =detT
el-jkaibjck SRSy

Which again is independent of the choice of a,b and c.

$? = (lies ®eq + 16, ® ey + 1363 @ e3)(hieg @ eq + e, Q ey + 13e5
® e3)
= (Lie1 ®e(hie; Qeq) + (Lie; ®eg)(ze; Q ey)
+ (her ®e)(dze; Q ez) + -+ (1363 ® e3) (1363 Q e3)
=Xe1 Qe +Ae; Qe +5e; Qe
repeated multiplication leads to,

" =11e; ® e; +17e; @ e; + 13e5 ® e

0 —cosf sinBsina
W(a,p) = (wx) = ( cosf 0 —sin S cos a)
—sinfsina sinf cosa 0

Q(a,B,0) = 1+ W(a,B)sin® + W2(a,)(1 —cos ) =
Q(a, B,6) Row 1:
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sin(a) cos(a) sin?(B) (1 — cos(B)) — cos(B) sin(B),

sin (a)sin (f)sin (8) + cos (a)sin (B)cos (£)(1 — cos (6))}
Q(a, B,6) Row 2:

{sin (a)cos (a)sin?(B)(1 — cos (8)) + cos (B)sin (6),

(1 — cos(6))(—cos?(a)sin?(B) — cos?(B)) + 1,

sin (a)sin (f)cos (f)(1 — cos (6)) — cos (a)sin (B)sin ()}
Q(a, B,6) Row 3

{cos (a)sin (B)cos (B)(1 — cos (8)) — sin (a)sin (f)sin (6),

sin(a) sin(B) cos(B) (1 — cos(B)) + cos(a) sin(B) sin(H),

(1 — cos (8))(—sin?(a)sin?(B) — cos?(a)sin?(B)) + 1}

The transpose of the tensor equation can be found by transposing term-by term in

(exp(tS))T =1+ (ST + % (tS)?T + % (tS)3T + ---

which is obviously the same as exp(tS)T by the given definition.
Let the spectral form of S be such that,
S=X(e;®e) + (e, ®ey) +15(e3 ® e3)

We can write the exponential series in terms of the spectral form so that,
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2
= <1 + Mt + (A;) + ---)(e1 R e,)

2
+ (1 + Azt + (A;f) + "')(ez ® ez)

2
+ (1 + Ast + (AZ? + ---)(e3 ® es)

=eite; Q@ e, + ete, ®e, + eMe; ® ey

so that the eigenvectors of exp(tS) are the same as those of S but the latter’s

eigenvalues are et o(12t) and eldst), Clearly,
3 3
det(exp(tS)) = 1_[ eit) = exp (Z t/1i> = exp(ttrS).
i=1 i=1
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First recall the result that for any tensor S, the cofactor §¢ = (S — ;S + I, 1)T
(ux)? = (eqzjuqe; ® €;)(epmuper @ ey,)
= ejgjeipmUatp(€; @ €,)0)
= ejgjejpmUap(€; @ ep)
= (6i80am — SimOap)usuf (e; ® ey)

= (Ul — OimUglig)e; ® ey

=u®u—(u-uwl
trff(lux)?] = u-u—3u-u=—-2u-u
trf(ux)] =0

But from previous result,

T

(ux)¢ = ((u x)? = (u x)tr(u x) + % [tr2(u x) — tr((u X)Z)]l)

1 T
=(u®u—(u-u)l—0+§[0+2u-u]l)
=uQu—(u-wI-0+[(u-w]DT
=u®@u
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We first observe that,

QB)(e®e)=cos(B)(e®e)+ (1—cos(f))e® e +sin(f)[ex (e R e)]
The last term vanishes immediately on account of the fact that e @ e is a symmetric
tensor. (The contraction of a symmetric and an antisymmetric tensor always
vanishes). Consequently, we have,

QB)(e®e)=cos(A)(e®e)+(1—cos(f))eRe=eQRQ e
which again means that Q(f) has no effect one®e so that,
QO)(I—e®e)=cos(A)+ (1 —cos(h))e®e+sin(@)(ex) —e®e
=cos(B)(I—e® e) + sin(0)(e x)

as required.

For an arbitrary vector u,
(ux)? = (ejgjuqge; ® €)(epmule; ® e;)

= ejgjeipmUatp(€; & en)d)
= ejqjeipmUap(€; @ ep)
= (8ig8am — SimOap)usuP (e; ® en)
= (Unl; — SimlUala)e; ® ey,
=u@u—(u-u)l

Ifu =e, aunitvector,u- u=1and W = (e x),

W2=(ex)(ex)=(e®e)—1

2 1
0 -z %
The skew tensor (e X) = W = 2 o L
3 V6
1 1
% %
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i3
Ne
2

7)
2

3
2
)

)
)

/ . 2 1 . 2 1\
3 V6 3 V6
(e x)?2 =W? = 2 0 1 2 0 1
3 V6 3 V6
1 1 0 1 1 0
V6 V6 V6 V6
5 1 1
6 6
_ 1 5 1
6 6 3
1 1 1
3 3 3
™ _ w2 (1 = cos E
Q(6)—I+Wsm6+w (1 cos6)
5 V3 1 1 V3 1 1
1—=(1—— ——t=--14+—=] —+=|-1
6( 2) Ve 6( +2) z«a+3< *
1 V3 5 V3 1 1
= — =1+ — ——{1—— — (1
J6 6 2 6 2 26 3
1 V3 1 1 V3 1
——— gl =l el = | o= 1+=(—-1+
\aets(+%) mesli2) 1
0.888354 —0.430577 0.159465
=1 0.385919 0.888354  0.248782
—0.248782 —0.159465 0.955341
The inverse of this tensor is its transpose and its determinant is unity. Clearly, it is
the rotation tensor we seek.

W(a,p) = (wx) = (

0
cosf
—sinfsina

—cosf
0
sinf cosa

sinf sina
—sinf cosa
0

)
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. . 1
Along the bisector of the e; — e, axis, @ = %,,8 = g Consequently, w = 531 +

0 0 7 o4 4 0
i BB - lwerEn = L
ze W) =w0=| 0 0 —Z\w(3)= : 73 0
1 1
-—= = 0 0 0 -1

And the rotation tensor for this axis is,

Q) = 1+ Wsinf + W2(1 — cos 9)

1 14 p 1 . p sin 8
2( cos 6) 2( cos ) g

B 1 . p 1 14 p sin 6
= 2( cos 6) 2( cos ) Vi
sin 6 sin 6 p
i —_— cos
V2 V2
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Q={{3/4, S8grt[3]/4, 1/2}, {Sgrt[3]/4, 174, -Sgrt[3]/2},
{-1/2, Sgrt[3]/2, 0O}}

A=-{{1,0,0}, {O, 2,0}, {OD, 0, 3}}

F = Transpose [{]

-3 W3 1, A3

1
14 = —_— —hy 1 — e
r r
4

Vieos1

r r r Ors

2 "L 2" 2 1)

{ - —

r r

-4 4 2- - 4

-r3 v 3 1,4 -3 1 V3 4 -1 W3 17

Ve e el e 2l T o
Q.A.F

rr27 TY3 34 T3 41 V3. -3 V3 T4
A I I e e e e I
L 16 8- - 16 le g8 - -8 8 4.
Eigenvalues [Q.A.F]

‘:3|r2|r 1:‘

G=0Q.A.F

rr27 TY3 34 T3 41 V3. -3 V3 T4
A I I e e e e I
L 16 8- - 16 le g8 - -8 8 4.
Eigenvectors [G]

ol 1,00, ! o, 3 >, 1l
-l-l—_'. r I".l—'. r I". l——r—_r ok
S ety L2 .
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M=1{{6, 5, 4}, {5, 6, 4}, {4, 4, 3}}
Eigenvalnes[M]

Eigenvectors[M]

":":'Er 5r 4:‘: ‘:5r 'Er '&:‘r ‘:&r 4: 3:‘:‘

Clearly, the rotation axis here is the unit vector e; and the angle of rotation is g

Consequently, since e; = {0,0,1},

0 -1 0 -1 0 0
W=(e;x)=(1 0 O0andW?=(0 -1 0

0O 0 O 0 0 0
Q(%) = I+Wsin%+W2 (1 —cosg)

1 0 O 0 -1 0 -1 0 O
=(O 1 0)+(1 0 0>+<0 —1l 0)
0 0 1 0 0 O 0 0 O
0 -1 0
=(1 0 O)
0 0 1

This same tensor can be found directly by recognizing that the tensor, Q = §; &

e;+& e, +¥E Q e; rotates {e, e,,e3} to {&;,&,, &3} so that the tensor we

seek is,

0 -1 0
Q=e,0e;—e;Re,+tez3Q®e;=|1 0 0
0O o0 1
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Tensor, §; e, + &, @ e, + & @ e;rotates {e, e,,e5}to {&;,&,, &} The tensor

we seek is,

(]

=)
I

e, +esRPe; —e; R e;

S elmers

S EISTRpNPS
o N|<|N|r—*
w

Using the noted result,
Q(0) =cosOI+ (1 —cosh)e @ e+ sin b (e X)
=cosOI+ (1 —cos®)(W?+1)+Wsinb
=1+ Wsin8 + W2(1 — cos9)

S?=(e;1 Qe+ e, Qe+ ie; Qes)(le; Q ey + e, ey +Aze;
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= (Le; ® e)(le; ®eq) + (L1e; @ eq)(he; & ez)
+ (161 @ e)(Aze; ® e3) + -+ + (135 Q e3) (135 ® e3)
=Me;®ey+1Ae;, Qe +1Aje; Qe
repeated multiplication leads to,

=Ale; ® e; +15e; ® e; +A5e; Q e

Every vector has a skew tensor to which it is axial. A vector product is the same
thing as the product of the axial vector. For both operations to be possible, the
number of independent coefficients in both must equal:

The skew tensor expansion,

W= (% WE)EQE;

n(n-1)

Gives independent terms. A vector in n dimensional space is defined

by n independent terms. An axial vector can only exist in a space where these are
equal. We must solve the equation,

nn—1)
=

Apart from the trivial solution zero, we have n = 3.

Given three linearly independent vectors a, b and c, since the scalar products are

all scalar quantities, we can multiply or divide by them like regular scalars. Let the
products, Ta = u, Tb = vand Tc = w. It follows that u, vand w are also linearly
independent since T is non-singular. Hence

[STa,STb, STc]
[a,b, c]
_ [S(Ta),S(Tb),S(Tc)] [Ta, Th, Tc]
[Ta, Tb, Tc] [a,b,c]
B [Su, Sv,Sw] [Ta, Tb, Tc]
[u, v, w] [a,b,c]
= detSdetT

detST =
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First note that W is antisymmetric but W? = (e ® e) — I is the linear combination

of two symmetric tensors, and therefore symmetric. Assume that {I, W, W2} to be

linearly dependent. It means we can find a, 8 and y not all equal to zero such that
al + BW + yW? = 0

Since a, B and y are not all equal to zero, we assume in particular that § # 0.

Consequently, we can write,

a
W=—op-Lw?

BB

In which we have expressed the anti-symmetric tensor W as a linear combination
of two symmetric tensors! A contradiction! We can conclude that the set {I, W, W?}

is linearly independent.

Assume that the tensor set, {I, Q, QT} is linearly dependent. It means we can find
a, f and y not all equal to zero such that
al + fQ+yQT =0

Since Q(8) = I+ Wsin 8 + W2(1 — cos ), we substitute and obtain,

al + BQ+yQ" =

= al+ B(1+Wsin@ + W2(1 —cos0)) + y(I — Wsin 6 + W2(1 — cos 9))

=(a+ B+yYI+(B—y)Wsinf + (B +y)W?(1— cosh)

=al+ bW+ cW?2 =0
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if we write (a+ B+y)=a,(B—y)sin0d=b and (B+y)(1—cosh) =c

thereby contradicting the well-known fact that {I, W, W2} is a linearly independent

set.

Q(0) is a rotation about the vector e counterclockwise through an angle 6. It

therefore does not alter the magnitude or direction of any vector in the direction

of e; for any other vector, it has no effect on the magnitude but affects direction.

Since we are given that A € Sym, we inspect the tensor QAQT. Its transpose is,

(QAQNHT = (QMTAQT = QAQT. So that QAQT is symmetric and therefore

QAQT € Sym. so that the transformation is invariant.

Since we are given that A € IL+, the determinant of A is positive. Consider

det (QAQT). We observe the fact that the determinant of a product of tensors is

the product of their determinants (proved above). We see clearly that,
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det(QAQT) = det(Q) x det(A) x det(QT). Since Q is a rotation, det(Q) =
det(QT) = 1. Consequently, we see that,
det(QAQT) = det(Q) x det(A) x det(QT) = det(QAQT)
=1 x det(A) X 1 = det(A)

Hence the determinant of QAQT is also positive and therefore QAQT € L*

Let the scalar x = e - u be the projection of u onto the unit vector e. The square of

the magnitude of v is |v|?
= v v=cosf(1u) + (1 — cosf)(e ® e)u + sinf(e x u))
- (cosf(1u) + (1 — cosf) (e @ e)u + sinf(e x u)) -
= (u cosf + (1 — cos@)xe + sinf (e x u))2
= (ucosh) - (ucosh + (1 — cosf)xe + sinB(e X u))
+xe - (u cosf + (1 — cosf)xe + sinf(e x u))(1 — cosh)
+(e xu) - (ucosh + (1 — cosh)xe + sinf(e x u))sind
= u?cos? 6 + 2(cos 6 — cos? B)x? + 2(e X u - u)siné cosh
+ (1 — cos0)?x? + 2x(e x u - €)(1 — cosH) sinf
+ sin? 8 (e x u)?
= u? cos? 6 + 2(cosh — cos? 0)x* + 2(e X u - u)siné cosh
+ (1 — cos8)?x? + 2x(e X u - €)(1 — cosh) sinf
+ sin? 6 (u? — x?)
= u?(cos? 6 + sin? 0) + x?[2(cosh — cos? B) + (1 — cosB)? — sin? 0]
= u?

As the term in square brackets vanish when expanded.
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It is convenient to write Q(a) and Q(f) in terms of their i, j components; we

assume that the unit vector e = (xq, x5, X3):
[Q(a)]ij = cosa b;; + (1 — cosa)x;x; — sin a e;jxy
Consequently, we can write for the product Q(a)Q(B),
[Q()Q(B)]ij = [Q()]ik[Q(B)]j =
= [cosa 8y + (1 — cos a)x;x, — sina eik,xl][cosﬁ 8kj + (1 — cos B)xyx;
— SIn P €xjnn]
= cos a cos f 88y + cos a (1 — cos B) O xyXj — cOS a Sin f i€y jnXn
+ (1 — cos @) cos B x;x;,6; + (1 — cos a) (1 — cos B)x;xix;
— (1 = cos a) sin f x;XyXn€xjn — SiN @ COS P €13 X O
—sina (1 — cos B)€jXx Xk Xj + Sin a sin f €y €x jnXnX;
= cos a cos B 6;; + cos a (1 — cos B)x;x; — cos a sin f €;j,xy,
+ (1 — cos a) cos f x;xj + (1 — cos a)(1 — cos B)x;x;
— (1 —cos a) sin ff x;XxXn€xjn — SiN @ COS P €;X,
—sina (1 — cos B)€jX Xk Xj + Sin a Sin f €y €x jnXnX;
= cos a cos B 6;; + cos a (1 — cos B)x;x; — cos asin f €;j,xy,

+ (1 — cos a) cos B x;x; + (1 — cos a)(1 — cos f)x;x;

—|(1 — cos @) sin f x;XyXp€xjn|— Sin a cos f €;;x,

—|sina (1 — cos B)€xixix; |+ sin a sin B (8,6 — 61n6ji )xnX;

= (cos acos f — sina sin§)6;; + [1 — (cos a cos f — sin a sin B)]x;x;
— [(cos asin B — sin a cos B)]€;jnxy
= [Q(a + B)];;
With the boxed terms vanishing on account of antisymmetric contraction with

symmetric object.
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Since Q(a + B) = Q(a)Q(B) we can write that Q(a + 2m) = Q(a)Q(2m). But a
direct substitution shows that, Q(0) = Q(2m) = 1. We therefore have that,
Q(a + 2m) = Q(@)Q(2n) = Q(a)

which completes the proof. The above results show that Q(«) is a rotation along

the unit vector e through an angle a.

1,(QsQ"™) = tr(QsQ")
= tr(Q7QS) = tr(S)
=1,(S)

1
,(QsQ") = > [tr?(QSQT) — tr(QSQTQSQ)]

1
= S [3(S) - tr(Qs?QM)]

1

= S [I3(S) - r(Q"Qs?)]

1
=3 [17(S) — tr($?)] = I,(S)
I5(QSQ™) = det(QSQ™)
= det(QTQS) = det(S)

= 13(5)
Hence 1,,(QSQT) = I.(S), k =1,2, or 3
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|12]? = 2:Q = (@ X): (w X)
= (eikja)kei X ej): (eayﬁwyea X eﬁ)
= eikjwkeayﬁa),,&ia@-ﬁ

= deya)ka)y - 2(1)2

T-ouXx,thenT°=u®uand TT = — u x and det(u x) = 0.

det(S + u x) = det S + tr{(u ® w)sT) — tr(S°(u x))

=detS+ (u @ u):ST + (u x):S°¢

Note that for any skew tensor, £ and its axial vector u

Q% = 2u?

In the given result, let S =1, and let u be the axial vector of {). Then,
det(I+ Q) =detl+ (u@u): 1+ Q:1
As the identity tensor is both self-transpose and self-cofactor. Simplifying,
detI+ Q) =14+tr(u@u) +trQ
=1+ u-u

1
=1+-|QJ2
+2||

Using the fact that a skew tensor is necessarily traceless.
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In the figure shown, Let the original coordinates be O x; x, x3 and imagine that we
are leaving the vector OP which is presented as v = a;e; where e, e,and e5 are
unit vectors along O x; x, x5 If the coordinates are

rotated to O y; y, ¥3 such that the same vector now becomes v = b;§; where &,
§,and &; are unit vectors along the O y; y, y; system. These will be the new
coordinates after the rotation of coordinates to this point.

Clearly, OA = a; and OB = a,. We need to find the lengths , OA"”" = b; and
OB = b,. We drop perpendicular lines to the lines O y; and O y, meeting them
at A" and B'respectively. It is clear that OA’ = a, cos a. Furthermore, AA'" =
a, sin a because PA is the hypotenuse

X
of a right angled triangle APA"with :
angle a at APA""’ And it is easy to see

that AA’A"A'"" is a rectangle. Its

opposite sides are equal, consequently,

the length

OA"" = b, = a;cosa + a, sina.

=a;(&;-ey) +a(&; -ey)

By the same arguments, noting that BB'B”’B’"’ is also a rectangle. If we rotate from

the coordinates O x; x, x5 to O y; y, y3, the rotation vector is:R = §; & e;. We
take the transpose of this tensor and writing the unit vector with a prime because

we are actually moving O x; x, x3 to Oy, y, y3 while

keeping the vector v unchanged. Hence, we have: — AH
I
RTV = (ej ® ‘q'j)aiei A
:a.e.({..e.) _ﬁ__f—
R A Al
Expanding for this two-dimensional case, we have:

R'v = e1(a1(§1 cep) +ax(§; - ez)) + ez(‘h(fz eq) +ax(§; - ez))

as expectedt.
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By the Cayley-Hamilton theorem,
U3 - 11U2 ar IzU - I3l - 0

which contracted with U gives,
U*-LU3+L,U%2-1;,U=0
so that,
U* =103 -1,U? + 15U
and
tr(U*) = ;tr(U3) — Ltr(U?) + I3tr(U)
= L,(U)(1 (V) = 3L,(V)L(U) + 31;(0)) — L(V) (17 (V) — 21,(U))
+ 1,(U)15(U)

= I}(U) — 41} (W), (U) + 4L, (W) 5(U) + 213 (U)

But,

1(0) = 5 [(©) — tr(€)] = 7 [F(U?) — tr(U")] = 5 [tr2(U?) — tr(U]

= %[(If(u) —2L,(U))" - tr(U4)]

= %[ I} (U) — 417 (U),(U) | + 415 (U)

N

F ) — 42 O)LO)] + 4, (0)1(0) + 23W) )

The boxed items cancel out so that,
L,(C) = 13(U) - 21, (V) 15(V)
as required.

I5(C) = det(C) = det(U?) = (det(U))? = I5(U)
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®,(A) and ®,(A) are both invariant under G, therefore, ®;(QAQT) =
Q®;(A)Q" and @,(QAQ") = Q®,(A)Q". Clearly,

@, (QAQN)®,(QAQ") = Q®,(A)Q" Q@,(A)Q"

= Q@;(A)®,(A)Q"
Which obviously shows that @, (A)®,(A) satisfies the conditions for invariance

under G.

Since we are given that A € Psym, it means its characteristic equation has roots

that are all positive. This equation can be written as
|[A—-AIl =0

The eigenvalues are the roots of the above equation. We now try to find the
characteristic equation of the tensor QAQT. Following the above equation, if « is
an eigenvalue of QAQT, then,

|QAQ™ — aI| = [QAQ" - aQIQ|

= |Q(A — aD)Q"|

= det(Q) x det(A — al) x det(QT)

= det(A —al) = 0.
Clearly, QAQT has the same characteristic equations as A and hence they have the
same eigenvalues. Since A € Psym we have reached the same conclusion

that QAQT € Psym.
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Higher-Order Tensors

Triads and tetrads define tensors of order three and four. This section formalizes certain issues
on tensors of orders higher than two — beyond their basis tensors. Apart from tensors obtained
from direct products of first and second order tensors, or from spatial derivatives (Frechet
derivatives) perhaps the only important tensor of the third order is the alternating tensor we
have accompanied in one way or another, from the d=beginning of the book. They were also

useful in defining the curls of vectors and tensors.

Fourth Order Tensors
Definition
A fourth-order tensor is a linear transformation of a second-order tensor to a
I second-order tensor.

End of Definition
Given a second order tensor A, the transformation,

TA=B
Such that B is also a second order tensor makes T a fourth-order tensor provided the
transformation is linear; that is, fora, f € R,and A,B € L,

T(aA + SB) = aTA + STB.

We can form second-order bases for fourth-order tensors like the bases for second-order tensors.
In order to do that, we define covariant and contravariant second-order bases as follows: From
the base vectors g' and g/ we define the contravariant tensor bases, GY = g' ® g/. The
covariant tensor bases are similarly defined from the covariant base vectors so that, G;; = g; ®
8j
Itis also necessary to define the behavior of familiar products as they apply to second order bases

and tensors. Following the definition of the dyad product from its interactions with vectors, we
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introduce two products for second order tensors that create fourth order tensors: The Dyadic
Product, &, and the Squared Times product, [X. Define the dyadic and squared times products
of tensors as, (A® B)C = (B:C)A and (AX B)C = ACBT We proceed to show that
(AX B) (C® D) = ACBT ® D, for,
(AXB) (C® D)E = (AKX B)(D:E)C

= (ACBT)D:E

= (ACBT ® D)E
so that

(AXB) (C®D)=ACBT®D

The following examples define the fourth-order identity tensors, Identity, symmetrizer,

transposer and the anti-symmetrizer.

1. Define the dyadic and squared times products of tensors as, (A @ B)C = (B: C)A and
(A X B)C = ACBT For vectors a, b and tensors A, B show that (AXIB) (a®@ b) = Aa ®
Bb.
(AXB) (a®b)=A(a®b)BT = Aa ® Bb

2. Define the dyadic and squared times products of tensors as, (A @ B)C = (B: C)A and
(A X B)C = ACBT For vectorsa, b,candd showthat @@ b) K (c®d) = (a®c) ®
(b® d)

For a tensor E,
(a®b) X (c® d))E = (a ® b)E(d ® c)
=(@® o[(E™b) - d]
= (@ ® ) tr((d ® b)E)
=(@® o[(b® d):E]
=(@®0®bA)E
sothat( @@ b)) X (c®d) = (a®c) QR (bR d).
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3. Define the tensor basis GY = g* ® g/, observe that unlike the scalar component gij, the
tensor G is not symmetrical in its indices; furthermore, show that I = gUG"f X gaﬁG“ﬁ is

the fourth order identity tensor.
By the definition of GY = g' ® g/, It is immediately clear that GV = [Gji]T. It is therefore not
symmetric in its components. We further observe that gijGij is the component representation
of the second-order unit tensor.
Lastly, I is the fourth-order identity tensor. This is evident because, given any second-order
tensor T, IT = T. To show this to be true, take any component representation of T and expand

IT:
IT = (9:;;GY X gapG*?)T
= (9:jGY R gopG™)Tug' ® g’
= (9167 X gapG*F )Tia G
= 9ij9apTi(GY X G*F)GH
= 9ij9apTiGY GF GF*
= 9ij9apTug’* g'"* G**
= 68T G = T;oG™*
=T
Showing that, I =1 [X I

4 . Given that 1 = 1K 1, show that, I = 9:;91GY X G* = g;,9;,GY @ G
The first expression is recognizable as I X I since

I=IXI=g;;GY X g,pG*
= 9ij9apG’ X G
Let us see how the second expression operates on a second-order tensor:
9i971(GY @ G*)T = gu 9,1 (GY ® G*')T,58* ® g
= 99 Tup(GY ® 6G*)g* @ g*
= g9 jTapGY (le: (8* ® gﬁ))

= gudnTapG gk g = 675 T,pGY
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confirming that g 9,;GY ® G* = 1= g;9,(8' ® g) ® (g @ g).

5. For a second-order tensor A show that Al = [IA = A where [ is the fourth-order unit tensor.
Note that I =IX1I. Therefore, Al = AIXI) = ITAI = A. Similarly, IA= (IXK DA =

IAIT = A since the identity tensor is symmetric and hence self-transpose.

6. The transposer tensor T turns a second-order tensor into its transpose: TS = ST = ST;
show that T = g;,9,GY ® G

TS = gugx(GY ® G')S
= 9u9x(G7 @ G*)(5*g, ® g;p)
= 9ugjxS* GY (le: (8. ® gﬁ))
= 9u9xS**GY(g" - g5)(g" - 8)
= 9udxS**GY 8468} = S;GY
=ST

ST = Sgllgjk(GU ® le)
= (58, ® 84)9u9x(G” ® G')
= 9ug kS (8. ® 85):GY) G
= gugiS* G (g" - 8.)(8' - 8p)
= 9ugkS** G885 = SUG,
=ST

7. Define the symmetrizer, S and anti symmetrizer, W tensors as fourth order tensors that
return the symmetric and antisymmetric parts of a second-order tensor; show that § =

%(H+T)andW=%(H—’]I‘).

Consider a tensor A.

1 1 1
SA:E(H+']I‘)A=E(HA+']I‘A) =§(A+AT) =symA

Similarly,
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1 1 1
WA=§(H—']I‘)A=E(]IA—']I‘A) =E(A—AT) =skwA

8. For any second-order tensor A Show that SA = AS, and that WA = AW where S is the
fourth-order symmetrizer tensor. [Hint: Al = [A, TS = ST]
Consider a tensor A.

1
SA=-(1+TA

1 1
=E(]IA+’JI‘A) =E(A+AT)

= symA
1
AS = A<E(]I+']I‘)>

1
= > (AL +AT)

1
= E(HA+ TA) = sym A
so that SA = AS = sym A. Similarly,

1 1
WA = (- T)A = (1A~ TA)

1
=E(A—AT) = skw A

1 1
AW=A<E(H—T)> = > (Al - AT)

—1]]A ']I'A—lA AT
= S(IA—TA) = (A - A")

=skw A
showing that WA = AW = skw A

9. For the fourth order tensors S, T, and W show that (a) TT =1, (b) TS = ST, (¢) SS = S (d)
WW = W and (e) SW = WS = 0.
(a) An indicial proof TT = I is straightforward. A direct proof is however more illuminating:

Consider the double transpose:
TTA =TAT=(ADH)T=A= 1A
showing clearly that TT = 1.
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(b)

']I'S—']I‘lll T —1TH TT—lT =S
= <§(+ ))_E( + )_E( +I) =

1 1 1

sothatTS =ST =S
(c) For asecond-order tensor A

SSA = S(symA)

= <% (I + ']I‘)) sym A

_1 A+1 A
=5 sym > Sym

=symA = SA
so that SS = S.
(d) For a second-order tensor A

WWA = W(skw A)

1
= <§ (I —T))skwA

—1k A+1k A
—ESW ESW

= skw A = WA
(e) For a second-order tensor A

SWA = S(skw A)
= G (I + ’]1")) skw A

—1k A 1k A
= 5 skw > Skw

=0A=0
Similarly,

WSA = Wsym A

1
= (E (I— ']I‘)> sym A
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= Lloyma-Zsyma=o0
=5 sym 5 SymA =

showing that SW = WS = O the fourth-order zero tensor.

10. Given that, the transposer T = g;,9xGY ® G, show that TT = L.
TT = (9u9xGY ® G*)(9* 9P Gup ® Gsy)

= 9u9jx9" 97°GY @ G, (G*: Gp)
= 90919 9P°GY ® G, (6565 )

= 94919 9"°GY ® Gs,

= 9u97.9"9"(8' ® g') ® (85 D 8y)
= gugi(g' ®g) ® (g' ® g")
=gx9:(8' ®g) ® (" ®gh

=1
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