
1. For any tensor 𝐒, show that, 𝐒𝐞𝛼 ⊗𝐞𝛼 = 𝐒

2. Gurtin 2.6.1

3. Show that that if the tensor 𝐓 is invertible, for any vector 𝐤, 𝐓𝐤 = 𝐨
automatically means that 𝐤 = 𝐨.

4. Show that if the vectors 𝐮, 𝐯 and 𝐰 are independent and 𝐓 is invertible, 
then the vectors 𝐓𝐮, 𝐓𝐯 and 𝐓𝐰 are also independent.

5. Show that 𝐰× 𝐰⊗𝐰 = 𝟎 and that 𝐰× 𝐰× = 𝐰⊗𝐰− 𝐰 2𝟏

6. Gurtin 2.8.5

7. Gurtin 2.9.1

8. Gurtin 2.9.2

9. Gurtin 2.9.4

Due July 29, 2016
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Homework 2.1



11. Gurtin 2.11.1 d&e
12. Gurtin 2.11.3
13. Gurtin 2.11.4
14. Gurtin 2.11.5
15. Let 𝐐 be a rotation. For any pair of independent vectors 𝐮, 𝐯 show that

𝐐 𝐮 × 𝐯 = (𝐐𝐮) × (𝐐𝐯)
16. For a proper orthogonal tensor 𝐐, show that the eigenvalue equation 

always yields an eigenvalue of +1.
17. For an arbitrary unit vector 𝐞, the tensor, 𝐐 𝜃 = cos 𝜃 𝟏 + (𝟏 −

cos 𝜃 )𝐞⊗ 𝐞 + sin 𝜃 (𝐞 ×) where (𝐞 ×) is the skew tensor whose 𝑖𝑗
component is 𝜖𝑗𝑖𝑘𝑒𝑘, show that 𝐐 𝜃 (𝟏 − 𝐞⊗ 𝐞) = cos 𝜽 (𝟏 − 𝐞⊗
𝐞) + sin 𝜃 (𝐞 ×).

18. For an arbitrary unit vector 𝐞 and the tensor, 𝐐 𝜃 defined as above, 
Show for an arbitrary vector 𝐮 that 𝐯 = 𝐐 𝜃 𝐮 has the same 
magnitude as 𝐮.

Due March 28, 2016
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Homework 2.2



1. Gurtin 2.13.1

2. Gurtin 2.14.1

3. Gurtin 2.14.2

4. Gurtin 2.14.3

5. Gurtin 2.14.4

6. Gurtin 2.14.5

7. Gurtin 2.15 1-3a, 3b, 3c

8. Gurtin 2.16 1-8

Due August 4, 2016
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Homework 2.3



For a given a tensor 𝐓 and its transpose 𝐓T, Write out 
expressions for the 

1. Symmetric Part

2. Skew Part

3. Spherical Part

4. Deviatoric Part.

What is the magnitude of 𝐓?
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Quiz 



Tensor Algebra

Tensors as Linear Mappings



No Topics From Slide Date

0 Home Work & Due dates & Quiz 1

1 Definitions, Special Tensors 7 July 22

2 Scalar Functions or Invariants 17

3 Inner Product, Euclidean Tensors 26

4 The Tensor Product 29-39

5
Tensor Basis & Component 
Representation 40

6 The Vector Cross, Axial Vectors 60

7 The Cofactor 68 July 25

8 Orthogonal Tensors 88

9
Eigenvalue Problem, Spectral 
Decomposition & Cayley Hamilton 100 Weekend
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July 22 to July 29, 2016



A second Order Tensor 𝐓 is a linear mapping from a 
vector space to itself. Given 𝐮 ∈ V the mapping,

𝐓: V → V
states that ∃ 𝐰 ∈ V such that,

𝐓 𝐮 = 𝐰.

Every other definition of a second order tensor can be 
derived from this simple definition. The tensor 
character of an object can be established by observing 
its action on a vector.

Second Order Tensor
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 The mapping is linear. This means that if we have two 
runs of the process, we first input 𝒖 and later input 𝐯.
The outcomes 𝐓(𝐮) and 𝐓(𝐯), added would have 
been the same as if we had added the inputs 𝒖 and 
𝐯 first and supplied the sum of the vectors as input. 
More compactly, this means,

𝐓 𝐮 + 𝐯 = 𝐓(𝐮) + 𝐓(𝐯)

Linearity
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Linearity further means that, for any scalar 𝛼 and tensor 𝑻
𝐓 𝛼𝐮 = 𝛼𝐓 𝐮

The two properties can be added so that, given 𝛼, 𝛽 ∈ R, and 
𝐮, 𝐯 ∈ V, then

𝐓 𝛼𝐮 + 𝛽𝐯 = 𝛼𝐓 𝐮 + 𝛽𝐓 𝐯

Since we can think of a tensor as a process that takes an 
input and produces an output, two tensors are equal only if 
they produce the same outputs when supplied with the same 
input. The sum of two tensors is the tensor that will give an 
output which will be the sum of the outputs of the two 
tensors when each is given that input. 

Linearity
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In general, 𝛼, 𝛽 ∈R , 𝐮, 𝐯 ∈ V and 𝐒, 𝐓 ∈ T
𝛼𝐒𝐮 + 𝛽𝐓𝐮 = (𝛼𝐒 + 𝛽𝐓)𝐮

With the definition above, the set of tensors constitute 
a vector space with its rules of addition and 
multiplication by a scalar. It will become obvious later 
that it also constitutes a Euclidean vector space with its 
own rule of the inner product.

Vector Space
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Notation. 

It is customary to write the tensor mapping without the 
parentheses. Hence, we can write,

𝐓𝐮 ≡ 𝐓(𝐮)

For the mapping by the tensor 𝐓 on the vector variable 
and dispense with the parentheses unless when 
needed.

Special Tensors
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The annihilator 𝐎 is defined as the tensor that maps all 
vectors to the zero vector, 𝐨: 

𝐎𝐮 = 𝐨, ∀𝐮 ∈ V

Zero Tensor or Annihilator
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The identity tensor 𝐈 is the tensor that leaves every 
vector unaltered. ∀𝒖 ∈ V ,

𝐈𝐮 = 𝐮

Furthermore, ∀𝛼 ∈ R , the tensor, α𝐈 is called a 
spherical tensor.

The identity tensor induces the concept of an inverse of 
a tensor. Given the fact that if 𝐓 ∈ T and 𝐮 ∈ V ,  the 
mapping 𝐰 ≡ 𝐓𝐮 produces a vector.

The Identity
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Consider a linear mapping that, operating on 𝐰, 
produces our original argument, 𝐮, if we can find it:

𝐘𝐰 = 𝐮

As a linear mapping, operating on a vector, clearly, 𝐘 is a 
tensor. It is called the inverse of 𝐓 because,

𝐘𝐰 = 𝐘𝐓𝐮 = 𝐮

So that the composition 𝐘𝐓 = 𝐈, the identity mapping. 
For this reason, we write,

𝐘 = 𝐓−1

The Inverse
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It is easy to show that if 𝐘𝐓 = 𝐈, then 𝐓𝐘 = 𝐘𝐓 = 𝐈.

 HW: Show this.

The set of invertible sets is closed under composition. It 
is also closed under inversion. It forms a group with the 
identity tensor as the group’s neutral element

Inverse
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Given that 𝐘𝐓 = 𝐈 we want to show that 𝐓𝐘 = 𝐘𝐓 = 𝐈.

Consider 𝐓𝐘𝐓𝐮 where 𝐮 is a vector. Since 𝐘𝐓 = 𝐈, it 

follows that 𝐓𝐘𝐓𝐮 = 𝐓𝐈𝐮 = 𝐓𝐮 ≡ 𝐯 where 𝐯 is a vector. 

Clearly,

𝐓𝐘𝐓𝐮 = 𝐓𝐘𝐯 = 𝐯

which immediately shows that 𝐓𝐘 = 𝐈 as required to be 

shown.
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Answer



Given 𝐰, 𝐯 ∈ V ,  The tensor 𝐀T satisfying 

𝐰 ⋅ 𝐀T𝐯 = 𝐯 ⋅ (𝐀𝐰)

Is called the transpose of 𝐀.

A tensor indistinguishable from its transpose is said to 
be symmetric. 

Transposition of Tensors
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There are certain mappings from the space of tensors 
to the real space. Such mappings are called Invariants of 
the Tensor. Three of these, called Principal invariants 
play key roles in the application of tensors to continuum 
mechanics. We shall define them shortly. 

The definition given here is free of any association with 
a coordinate system. It is a good practice to derive any 
other definitions from these fundamental ones:

Invariants

oafak@unilag.edu.ng   12/30/2012Department of Systems Engineering, University of Lagos 18



If we write 
𝐚, 𝐛, 𝐜 ≡ 𝐚 ⋅ 𝐛 × 𝐜

where 𝐚, 𝐛, and 𝐜 are arbitrary vectors. 

For any second order tensor 𝑻, and linearly 
independent 𝐚, 𝐛, and 𝐜, the linear mapping 𝐼1: T →R

𝐼1 𝐓 ≡ tr 𝐓 =
𝐓𝐚, 𝐛, 𝐜 + 𝐚, 𝐓𝐛, 𝐜 + [𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]

Is independent of the choice of the basis vectors 𝐚, 𝐛,
and 𝐜. It is called the First Principal Invariant of 𝐓 or 
Trace of 𝐓 ≡ tr 𝐓 ≡ 𝐼1(𝐓)

The Trace
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𝐼1 𝑻 ≡ tr 𝑻 =
𝑻𝒂, 𝒃, 𝒄 + 𝒂, 𝑻𝒃, 𝒄 + [𝒂, 𝒃, 𝑻𝒄]

[𝒂, 𝒃, 𝒄]
Let us refer each vector to a covariant basis so that, 𝒂 = 𝑎𝑖𝐞𝑖, 𝒃 = 𝑏𝑗𝐞𝑗, and 𝒄 = 𝑐𝑘𝐞𝑘 . Hence, 

𝐼1 𝑻 ≡ tr 𝑻 =
𝑻 𝑎𝑖𝐞𝑖 , 𝑏𝑗𝐞𝑗 , 𝑐𝑘𝐞𝑘 + 𝑎𝑖𝐞𝑖 , 𝑻 𝑏𝑗𝐞𝑗 , 𝑐𝑘𝐞𝑘 + 𝑎𝑖𝐞𝑖 , 𝑏𝑗𝐞𝑗 , 𝑻 𝑐𝑘𝐞𝑘

𝒂, 𝒃, 𝒄

=
𝑎𝑖𝑏𝑗𝑐𝑘 𝑻𝐞𝑖 , 𝐞𝑗 , 𝐞𝑘 + 𝐞𝑖 , 𝑻𝐞𝑗 , 𝐞𝑘 + 𝐞𝑖 , 𝐞𝑗 , 𝑻𝐞𝑘

𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘
But once we are able to express tensors in component form, we will easily prove that 
𝑻𝐞𝑖 , 𝐞𝑗 , 𝐞𝑘 + 𝐞𝑖 , 𝑻𝐞𝑗 , 𝐞𝑘 + 𝐞𝑖 , 𝐞𝑗 , 𝑻𝐞𝑘 = 𝑇𝛼𝛼 𝐞𝑖 , 𝐞𝑗 , 𝐞𝑘 . Using this result, we have that

𝐼1 𝑻 =
𝑎𝑖𝑏𝑗𝑐𝑘𝑇𝛼𝛼 𝐞𝑖 , 𝐞𝑗 , 𝐞𝑘

𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘
=
𝑎𝑖𝑏𝑗𝑐𝑘𝑇𝛼𝛼𝑒𝑖𝑗𝑘

𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘

=
𝑒𝑖𝑗𝑘𝑎

𝑖𝑏𝑗𝑐𝑘

𝑒𝑖𝑗𝑘𝑎
𝑖𝑏𝑗𝑐𝑘

𝑇𝛼𝛼 = 𝑇𝛼𝛼

Which, in either case, is obviously independent of the choice of 𝒂, 𝒃 and 𝒄.
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The trace is a linear mapping. It is easily shown that 
𝛼, 𝛽 ∈ R , and 𝑺, 𝑻 ∈ T

tr 𝛼𝑺 + 𝛽𝑻 = 𝛼tr 𝑺 + 𝛽tr(𝑻)

HW. Show this by appealing to the linearity of the 
vector space.

While the trace of a tensor is linear, the other two 
principal invariants are nonlinear. We now proceed to 
define them

The Trace
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The second principal invariant 𝐼2 𝑺 is related to the 
trace. In fact, you may come across books that define it 
so. However, the most common definition is that

𝐼2 𝑺 =
1

2
𝐼1
2 𝑺 − 𝐼1(𝑺

2)

Independently of the trace, we can also define the 
second principal invariant as,

Square of the trace
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The Second Principal Invariant, 𝐼2 𝑻 , using the same 
notation as above is

𝑻𝒂 , 𝑻𝒃 , 𝒄 + 𝒂, 𝑻𝒃 , 𝑻𝒄 + 𝑻𝒂 , 𝒃, 𝑻𝒄

𝒂, 𝒃, 𝒄

=
1

2
tr2 𝑻 − tr 𝑻2

that is half the square of trace minus the trace of the 
square of 𝑻 which is the second principal invariant. 

 This quantity remains unchanged for any arbitrary 
selection of basis vectors 𝒂, 𝒃 and 𝒄.

Second Principal Invariant
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The third mapping from tensors to the real space 
underlying the tensor is the determinant of the tensor. 
While you may be familiar with that operation and can 
easily extract a determinant from a matrix, it is 
important to understand the definition for a tensor that 
is independent of the component expression. The latter 
remains relevant even when we have not expressed the 
tensor in terms of its components in a particular 
coordinate system.

The Determinant
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As before, For any second order tensor 𝑻, and any 
linearly independent vectors 𝐚, 𝐛, and 𝐜, 

 The determinant of the tensor 𝑻, 

det 𝑻 =
𝑻𝒂 , 𝑻𝒃 , 𝑻𝒄

𝒂, 𝒃, 𝒄

(In the special case when the basis vectors are 
orthonormal, the denominator is unity)

The Determinant
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 It is good to note that there are other principal 
invariants that can be defined. The ones we defined 
here are the ones you are most likely to find in other 
texts. 

 An invariant is a scalar derived from a tensor that 
remains unchanged in any coordinate system. 
Mathematically, it is a mapping from the tensor space 
to the real space. Or simply a scalar valued function 
of the tensor.

Other Principal Invariants
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 When the trace of a tensor is zero, the tensor is said to be 
traceless. A traceless tensor is also called a deviatoric
tensor.

 Given any tensor 𝐒, A deviatoric tensor may be created 
from 𝐒 by the following process:

𝐒0 ≡ dev 𝐒 ≡ 𝐒 −
1

3
tr 𝐒 𝐈 = 𝐒 − 𝑠𝐈

So that 𝑠 =
1

3
tr 𝐒 ; 𝑠𝐈 is called the spherical part, and 𝐒0 as 

defined here is called the deviatoric part of 𝐒.

Every tensor thus admits the decomposition,
𝐒 = 𝐒0 + 𝑠𝐈

Deviatoric Tensors
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The trace provides a simple way to define the inner 
product of two second-order tensors. Given 𝑺, 𝑻 ∈ T
The trace,

tr 𝑺𝑇𝑻 = tr(𝑺𝑻𝑇)

Is a scalar, independent of the coordinate system 
chosen to represent the tensors. This is defined as the 
inner or scalar product of the tensors 𝑺 and 𝑻. That is,

𝑺: 𝑻 ≡ tr 𝑺𝑇𝑻 = tr(𝑺𝑻𝑇)

Inner Product of Tensors

oafak@unilag.edu.ng   12/30/2012Department of Systems Engineering, University of Lagos 28



The trace automatically induces the concept of the 
norm of a vector (This is not the determinant! Note!!) 
The square root of the scalar product of a tensor with 
itself is the norm, magnitude or length of the tensor:

𝑻 = tr(𝑻𝑇𝑻) = 𝑻: 𝑻

Attributes of a Euclidean Space
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Furthermore, the distance between two tensors as well 
as the angle they contain are defined. The scalar 
distance 𝑑(𝑺, 𝑻)between tensors 𝑺 and 𝑻 :

𝑑 𝑺, 𝑻 = 𝑺 − 𝑻 = 𝑻 − 𝑺

And the angle 𝜃(𝑺, 𝑻),

𝜃 = cos−1
𝑺: 𝑻

𝑺 𝑻

Distance and angles

oafak@unilag.edu.ng   12/30/2012Department of Systems Engineering, University of Lagos 30



A product mapping from two vector spaces to T is 
defined as the tensor product. It has the following 
properties:

"⊗":V ×V → T
𝒖⊗ 𝒗 𝒘 = (𝒗 ⋅ 𝒘)𝒖

It is an ordered pair of vectors. It acts on any other 
vector by creating a new vector in the direction of its 
first vector as shown above. This product of two 
vectors is called a tensor product or a  simple dyad.

The Tensor Product
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It is very easily shown that the transposition of dyad is 
simply a reversal of its order. (Shown below).

The tensor product is linear in its two factors.

Based on the obvious fact that for any tensor 𝑻 and 
𝒖, 𝒗,𝒘 ∈ V , 𝑻 𝒖⊗ 𝒗 𝒘 = 𝑻𝒖 𝒗 ⋅ 𝒘 = 𝑻𝒖 ⊗ 𝒗 𝒘

It is clear that
𝑻 𝒖⊗ 𝒗 = 𝑻𝒖 ⊗ 𝒗

Show this neatly by operating either side on a vector

Furthermore, the contraction, 
𝒖⊗ 𝒗 𝑻 = 𝒖⊗ 𝑻𝑇𝒗

A fact that can be established by operating each side 
on the same vector.

Dyad Properties
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Operate on the vector 𝒛 and let 𝑻𝒛 = 𝒘. On the LHS, 
𝒖⊗ 𝒗 𝑻𝒛 = 𝒖⊗ 𝒗 𝒘

On the RHS, we have:

𝒖⊗ 𝑻𝑇𝒗 𝒛 = 𝒖 𝑻𝑇𝒗 ⋅ 𝒛 = 𝒖 𝒛 ⋅ 𝑻𝑇𝒗

Since the contents of both sides of the dot are vectors 
and dot product of vectors is commutative. Clearly,

𝒖 𝒛 ⋅ 𝑻𝑇𝒗 = 𝒖 𝒗 ⋅ 𝑻𝒛

follows from the definition of transposition. Hence,

𝒖⊗ 𝑻𝑇𝒗 𝒛 = 𝒖 𝒗 ⋅ 𝒘 = 𝒖⊗ 𝒗 𝒘

Composition with Tensors
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Recall that for 𝒘, 𝐯 ∈ V ,  The tensor 𝑨T satisfying 

𝒘 ⋅ 𝑨T𝐯 = 𝐯 ⋅ (𝑨𝒘)

Is called the transpose of 𝑨. Now let 𝑨 = 𝒂⊗ 𝒃 a dyad.
𝐯 ⋅ 𝑨𝒘 =

= 𝐯 ⋅ 𝒂⊗ 𝒃 𝒘 = 𝐯 ⋅ 𝒂 𝒃 ⋅ 𝒘
= 𝐯 ⋅ 𝒂 𝒃 ⋅ 𝒘 = 𝒘 ⋅ 𝒃 𝐯 ⋅ 𝒂
= 𝒘 ⋅ 𝒃⊗ 𝒂 𝐯

So that 𝒂⊗ 𝒃 T = 𝒃⊗ 𝒂

Showing that the transpose of a dyad is simply a 
reversal of its factors.

Transpose of a Dyad
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If 𝐧 is the unit normal to a given plane, show that the 
tensor 𝐓 ≡ 𝟏 − 𝐧⊗ 𝐧 is such that 𝐓𝐮 is the projection 
of the vector 𝐮 to the plane in question.

Consider the fact that
𝐓𝐮 = 𝟏𝐮 − 𝐧 ⋅ 𝐮 𝐧 = 𝐮 − 𝐧 ⋅ 𝐮 𝐧

The above vector equation shows that 𝐓𝐮 is what 
remains after we have subtracted the projection 
𝐧 ⋅ 𝐮 𝐧 onto the normal. Obviously, this is the 

projection to the plane itself. 𝐓 as we shall see later is 
called a tensor projector.
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For 𝒖, 𝒗,𝒘, 𝒙 ∈ V , We can show that the dyad 
composition,

𝒖⊗ 𝒗 𝒘⊗ 𝒙 = 𝒖⊗ 𝒙 𝒗 ⋅ 𝒘

Again, the proof is to show that both sides produce the 
same result when they act on the same vector. Let 𝒚 ∈
V , then the LHS on 𝒚 yields:

𝒖⊗ 𝒗 𝒘⊗ 𝒙 𝒚 = 𝒖⊗ 𝒗 𝒘(𝒙 ⋅ 𝒚)
= 𝒖 𝒗 ⋅ 𝒘 (𝒙 ⋅ 𝒚)

Which is obviously the result from the RHS also.

This therefore makes it straightforward to contract 
dyads by breaking and joining as seen above.

Dyad on Dyad Composition
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Show that the trace of the tensor product 𝐮⊗ 𝐯 is 𝐮 ⋅
𝐯.

Given any three independent vectors 𝐚, 𝐛, and 𝐜, (No 
loss of generality in letting the three independent 
vectors be the curvilinear basis vectors 𝐞1, 𝐞2 and 𝐞3). 
Using the above definition of trace, we can write that,

Trace of a Dyad
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tr 𝐮 ⊗ 𝐯

=
𝐮⊗ 𝐯 𝐞1 , 𝐞2, 𝐞3 + 𝐞1, 𝐮 ⊗ 𝐯 𝐞2 , 𝐞3 + 𝐞1, 𝐞2, 𝐮 ⊗ 𝐯 𝐞3

𝐞1, 𝐞2, 𝐞3

=
1

𝑒123
𝑣1𝐮, 𝐞2, 𝐞3 + 𝐞1, 𝑣2𝐮, 𝐞3 + 𝐞1, 𝐞2, 𝑣3𝐮

=
1

𝑒123
𝑣1𝐮 ⋅ 𝑒23𝑖𝐞𝑖 + 𝑒31𝑖𝐞𝑖 ⋅ 𝑣2𝐮 + 𝑒12𝑖𝐞𝑖 ⋅ 𝑣3𝐮

=
1

𝑒123
ሼ 𝑣1𝐮 ⋅ 𝑒231𝐞1 + 𝑒312𝐞2 ⋅ 𝑣2𝐮 + 𝑒123 𝐞3

= 𝑢𝑖𝑣𝑖 = 𝐮 ⋅ 𝐯

Trace of a Dyad
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 It is easy to show that for a tensor product 
𝑫 = 𝒖⊗ 𝒗 ∀𝒖, 𝒗 ∈ V

𝑰2 𝑫 = 𝑰3 𝑫 = 0

HW. Show that this is so.

We proved earlier that 𝑰1 𝑫 = 𝒖 ⋅ 𝒗

Furthermore, if 𝑻 ∈ T , then,
tr 𝑻𝒖⊗ 𝒗 = tr 𝒘⊗ 𝒗 = 𝒘 ⋅ 𝒗 = 𝑻𝒖 ⋅ 𝒗

Other Invariants of a Dyad
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