Tensor Calculus

Differentials & Directional Derivatives




The GateauDifferential
"

We are presently concerned with Inner Product spaces
In our treatment of the Mechanics of Continua.
Consider a map,

1 © f
This maps from thedomainV to W z both of which are
Euclidean vector spaces. The concepts of limit and

continuity carries naturally from the real space to any
Euclidean vector space.
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The GateauDifferential

\’

Leto N e and: N f ,as usual we can say that the
limit

If for any pre-assigned real number 11, no matter
how small, we can always find real number] T
such that [ (o) <« | [ wheneverlo o | 1.

Thefunction is said to be continuous at if (o )
exists andq (o )
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The GateauDifferential
"

Specifically, for ~ T let this map be:

[ [
Oy (oRP k 1 EXS ||) 1 e 1)
We focus attention on the second variabldwhile we allow
the dependency one to be as general as possible. We shall
show that while the above function can be any given function
of e (linear or nonlinear), the above map is always linear |1
irrespective of what kind of Euclidean space we are mapping
from or into. It is called theGateaux Differential
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The GateauDifferential

et us make the Gateaux difi !
real space in two steps: First, waove to e Te ace and
allow "Q° Q cand we obtain,
i 3 2O | Qw Q.
(ONE 1) OXN! IOE(IJZ |)(DQ) ,Q|G£oo|Q)co
And let] Q& 3w the middle term becomes,
. W 30 ) Q0
| E 'Q D) Q6 ) Qw —Qw
3W QW
from which it is obvious that the Gateaux derivative is a
generalization of the wellknown differential from
elementary calculus. The Gateaux differentiaélps to
compute a local linear approximation of any function (linear
or nonlinear).
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The Gateaux Differential

\’

It is easily shown that the Gateaux differential is linear
In its second argumentie, for| N a

Oy(eh P 1 Q(enp
Furthermore, §
ool D Oq(ell)  Oq(oh

and thatfor| B N a

O3eh ]l 1D | Q) 1 Q(en
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7 (eh
We introduce the real numberQ | 1OIOEA O-h
oycefi 11 ENC B 3O
I Q(oﬁl)
O:I(.ﬁl I) \IOE=|I'(. | I |I) =|(')
S (L i B DEICHE PEEICHE PIO

Oy (ehD  O5(e)

i

In a similar way,
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TheFrechétDerivative
“

TheFrech't derivative or gradient of a differentiable
function is the linear operatorC O A & such that, for
onN e,

S|k coamm Kk Orf)

Obviously,GC O A A is a tensor because it is a linear
transformation from one Euclidean vector space to
another. Its linearity derives from the second argument
of the RHS.
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Differentiable RealValued Function

For a real vector function, we have the |
e ©a
TheGateaux differential in this case takes two vector
arguments and maps to a real value:
Ot e ©a

This is the classical definition of the inner product so that we
can define the differential as,
QD . o
o t Qo k O"@h)
This quantity,
0"®
(09
defined by the above equatlon IS clearly a vector.
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RealValued Function

\

It is the gradient of the scalar valued function of the
vector variable. We now proceed to find its components
In general coordinates. To do this, we choose a basis
{"H} O e. Onsuch a basis, the function,

o U'H
and,
o) QU TH)
we may alsoexpress the independent vector
®» QO H

on this basis.
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RealValued Function

The Gateaux differential in the direction of the basis vectatis,
— . ,“ O '?'H " o . ,n l‘) 'rH 'rH " L‘)?H
O 1 Ef— |) ) 'OE% | | ) @0 H)
e 1)) wH
| EH

0]

As the function"Cdoes not depend on the vector basis, we can
substitute the vector function by the real function of the components
L b h so that,

"GO0 H) @O R )
in which case, the above differential, similar to the real case discussed
earlier becomes,

T @)
10

O"®hH)

Dept of Systems Engineering, University of Lagos 11 oafak@unilag.edu.ng 12/27/2012



so that we can recover

Q@). T

O "hH) thzo T‘ v "Hi™H
! ’@)Fl‘)ﬁ‘))é' ‘@ )
IO T 0

Hence we obtain the welknown result that

L Q@ 1T @O )~
COM®) o T
which defines theFrechétderivative of a scalar valued

function with respect to its vector argument.
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Vector valued Function

* The Gradient of a Differentiable Ve

The definition of theFrechétclearly shows that the gradient
of a vectorvalued function is itself a second order tensor. We
now find the components of this tensor in general
coordinates. To do this, we choose a bagi$d} O e. Onsuch
a basis, the function,
3(0) "O(o)™H

The functional dependency on the basis vectors are ignorable
on account of the fact that the components themselves are
fixed with respect to the basis. We can therefore write,

3(¢) O M W )H
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Vector Derivatives

00 (L "HhH) 'HQ
Again, upon noting that the functionsO'O (0 "Hh'H),
'Q plloare not functions of the vector basis, they can

be written as functions of the scalar components alone
so that we have, as before,

0 (oK) ‘00 (0 "Hh'H) 'HQY
0’0 (oh'H) "HQY

Dept of Systems Engineering, University of Lagos 14 oafak@unilag.edu.ng 12/27/2012



function and easily o

O3 (oHp)

)

(5
(5
(=

Q1 ()], o
[T]on C O A G

Clearly, the tensor gradient of the vectoevalued vector function

IS,

' (o o oOwm). | .

—Q};) COA®) T (TD )'Hé H
Where due attention should be paid to the covariance of the
guotient indices in contrast to thecontravarianceof the non
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The Trace & Divergence

The trace of this gradient is called the divergence of the

function:
L . 170 ). . .

A BHOo) Oé ( )‘Hé 'H)
"0 h

H
2 <l @

C-—=

Y
10 :

—n

)
o

U
TO(bh )
U

—a| C
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TensorValued Vector Function

Considerthe mapping,

1 ¢ ——_—
Which maps from an inner product space to a tensor space.

The Gateaux differential in this case now takes two vectors
and produces a tensor:

Olde e©c

With the usual notation, we may write,

Ol| (oFicw) o{|(b HIW H) O (0 "HQ) "H)
[ o5 )] ™k [COA®]®

oY (0 HIKQ H'HE "H  OY (chH)™H

Each of these nine functions look like the real differential of
several variables we considered earlier.
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so that,
0| (ofip) oY (FHHE H®

Ty (U‘ LIDETIETN
T\ Uv\
Y (TUJU ) HS H(HtD)
(Y Y (TUDh) LD LT ) [QI(O)]QO
k [COA®ID®
Which defines the thirdorder tensor,
Q”(o) o 1Y (O h ). .
o C OA®) - HE HE H

and with no further ado, we can see that a thirdrder tensor
eptof SysEPEHPSTORIMIS&Y Veetor Into a seeond order tensor.  exakeuniagedung 1212712012



The Divergence of a Tensor Functio

The divergence operation can be defined |H ays.

Most common is achieved by the contraction of the last two
basis so that,

A EHo) HE Hi™H

'y @),
. o .
It can easily be shown that this is the particular vector that
gives, for all constant vectorst

(A Bk AED)
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RealValued Tensor Functions

Two other kinds of functions are critically important in
our study. These are real valued functions of tensors
and tensorvalued functions of tensors. Examples in the
first case are the invariants of the tensor function that
we have already seen. We can express stress in terms of
strains and vice versa. These are tensgalued functions
of tensors. The derivatives of such real and tensor
functions arise in our analysis of continua. In this section
these are shown to result from the appropriate Gateaux
differentials. The gradients oFrechétderivatives will be
extracted once we can obtain the Gateaux differentials.
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FrechétDerivative
Consider the Map: “

U0 a
TheGateaux differential in this case takes twtensor
arguments and maps to a real value:

O c©a
Which is, as usual, linear in the second argument. Hrechét

derivative can be expressed as the first component of the
following scalar product:

S Qg
odfieh ol
which, we recall, is the trace of theontraction of one tensor

with the transpose ofthe other secondorder tensors. This is
a scalar quantity.
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unction of a vector,
Qd 1 QY AY®AY . . .
, Ty
In the dual to the same basis, we can write,
Q] Q°YH$ H

Clearly,
Qg O BY BEY . oo N .
o 4| Ty HS H)d(Q"YHS H)
1 QY RY B RY
Ty
Again, note the covariance of the quotient indices.
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Examples

Letr) be a symmetric and positive definite te :
‘OHPROHDA T @(—||) be the three prmC|paI invariants of

N show that (a) .sn) £ the identity tensor, (b) -'g”)
AME Rand(c)—=> (”) O 1
= ()

can be written in the invariant component form

as,

Qan) Qan. .
i HS
9y (0%

=
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(a) Continued

‘\
Recall thatQ()) O@) Y hence
Q0@ ‘AN "

& "H

(04 QY
,Q‘Y’?‘ iy
—H H
QY
71 HS H
1 H§ "H §€
which is the identity tensor as expected.

()L

Dept of Systems Engineering, University of Lagos 24 oafak@unilag.edu.ng 12/27/2012



ﬁ In a similar waycan be writter

i
as, o
T (X!r]) ET_ Y “y .Y]':'Hé 'rH
'n Gr °
where we have utilized the fact thato(n) -[@ @) OQ 1.
Consequently,
T O(f]) ET_ Y “y .‘Y]THé 'rH
rn ¢r °
gjw Y 1Y 11 Y 17 Y|HE H
PRy g Y Y|HE H

"
E] % "Y)’Hé H OE
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AKDK K™Y T4 T Yy
Differentiating wrt “Y , we obtain

T“YH H Y Y “YT“Y“Y YYT“Y "H§ "H
vl Y% 2
%{ T YUY YY) | HE H
O.

a{ ToIY'Y Y'Y YUY ['HS TH

p o o i v T © T v T

A T YYHS HK[Y] Hs
Which is the cofactor of"Y |orn
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Real Tensor Functions

‘\

Consider the function’Q{  O(@ ) where @' Thand

| is a tensor.

ap o) &

To be specific, lefQ o.
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Real Tensor Functions

The Gateaux differen

odfeh o 1D 500 1D
200l 1 Dd 1 Dd 1 D)

0%<—| Cdd ’qp]
oo I dE 1 H d I PAG 1P
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Real Tensor Functions

With the last equall efinit

Inner product while noting that a circular permutatlon
does not alter the value of the trace. It is easy to
establish inductively that in the most general case, for
'Q T we have,

o o ) dof

Clearly,

F0@) o )
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Real Tensor Functions

Or that,
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Real Tensor Functions

‘\

Derivatives of the other two invariants of the tenso|

can be found as follows:
Q

Eq:éc‘oib O@d )]

P A e A N

g[c @GPE ¢ ] O@he
8
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Real Tensor Functions
\

To Determinethe derivative of the third invariant, we
begin with the trace of theCayleyHamilton for{:
od of of ® od ‘@) o
00 1
Therefore,
c0 Oq '00@) "COE)
of) 2idd) 0@ )

ﬂ
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Differentiating the Invariants

‘\

We can therefore write,

a0

0d O@Hod) (§[©(+I> @ )])é@b

so that, in terms of traces only,

o) (—‘;[c‘)c‘o{D cO@Od) ¢ OpP ]
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Real Tensor Functions

\\

| (%[o@(ﬂ)é o] ) oO@)e] ¢ od) ]
e o@] A
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The Euclidean Point Space

\’

In Classical Theory, the world is a Euclidean Point Space
of dimension three. We shall define this concept now
and consequently give specific meanings to related

concepts such as

A Frames of Reference,

A Coordinate Systems and
A Global Charts
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The Euclidean Point Space
"

A Scalars, Vectors and Tensors we will deal with in
general vary from point to point in the material. They
are therefore to be regarded as functions of position
In the physical space occupied.

A Such functions, associated with positions in the
Euclidean point space, are called fields.

A We will therefore be dealing with scalar, vector and
tensor fields.
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The Euclidean Point Space
\’

* The Euclidean Point Spaceis a set ofvelements
called points. For each pair of pointshe N .,
m o (ehe ) N T with the following two properties:
7. O(ehe) O(eh») O(oh) | ehehan,
2 O(ehw) O(ehd) v «
Based on these two, we Qroceed to show that,
O (ehe)

And that,
O (eh») O (»he)
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The Euclidean Point Space
\’

From property 1, lev © eitis clear that,

O(ehe) O(ehd) O (Hhe)
And it we further allow »© onevfind that,

O(ehe) O(ehe) O(ehe) O (ohe)
Which clearly shows thad (ehe) = the zero vector.
Similarly, from the above, we find that, -
O(ehe) = O(ehd) O (rhe)

So that¢ (eh») O (rhe)
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Coordinate System




Position Vectors

vector spaceE to which ¢ belongs, IS € ssociat
have shown. It is customary to oscillate between these
two spaces. When we are talking about the vectors,
they are iInE while the points are in .

We adopt the convention thate(«) k ¢ (ehn) referring
to the vector ¢. If therefore we choose an arbitrarily
fixed point N . hwe are associatinge( ), «( ) and
() respectlvely with¢ (eh ), 0 (¢h ) and ¢ (»h ).

These are vectors based on the poinshe and » with
reference to the origin chosen. To emphasize the
association with both points of as well as members of
E they are calledPosition Vectors
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Length in the Point Space

Recall that by M

o(\)k O(ehe) O(eh ) 9O( hﬂ
Furthermore, we have deduced tha¢ ( he) O «h
We may therefore write that,

o(¢c) o ) «
Which, when there is no ambiguity concerning the

chosen origin, we can write as,
o(¢) o «

And the distance between the two is,

Mle(0)) Mo ) o (]
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Metric Properties
“

* The norm of a vector is the square root of the inner
product of the vector with itself. If the coordinates of

e and « on a set of independent vectors arexs and w,
then the distance we seek is,

Be «) o \/Qoo W w W

The more familiar Pythagorean form occurring only
when'Q p.
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Coordinate Transformations
"

* Considera Cartesian coordinate system
ohvhal @ ho A 1 @ with an orthogonal basis. Let us
now have the possibility of transforming to another
coordinate system of an arbitrary naturew hw hw .
We can represent the transformation and its inverse
In the equations

O @mm)heod o ohho

* And if the Jacobianof transformation,
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JacoblianDeterminant

w_cbklf(cbﬁbﬁb) To 1o 1o

; ———— K
w| W) " feo To To

Tw T Tow
does not vanish, then the inverse transformation will exist.
So that,

Dept of Systems Engineering, University of Lagos 46 oafak@unilag.edu.ng 12/27/2012



Which represent vectors along the tangents to the
coordinate lines. (This is easily established for the Cartesian
system and it is true in all systemd. “l(® o ho) i

Wl 0l

So that

i Fl — ATTA —
W Tw Tw
The fact that this is true in the general case is easily seen
when we consider that along those lines, only the variable we
are differentiating with respect to varies. Consider the
general case where, o
T 7I(w ho hw )

The total differential of"lis simply,
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Natural Dual Bases

o oy it
o 1 T @
k Qo'H Qo™H Qo ™H
With "H(o o hoo )AHQ  pleto now depending in general
onwho AT & now forming a basis on which we can
describe other vectors in the coordinate system. We
have no guarantees that this vectors are unit in length
nor that they are orthogonal to one another. In the
Cartesian case HWQ pltlo are constants, normalized

and orthogonal. They are our familiar
A T R
| —h —AIIA —38
T w TG T w
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reciproca .
of partial differentials as

S B —
Tw
Which when expressed in component form yields,
Tw Tw, Tw
Qo — Qo — Qv — Qo
Tw Tw Tw
T T, I @
Qw —Q — QX —Qw
T W T W T W
T T, I @
Xy — QW —Qw —Qw
T W T W T W
Or, more compactly that,
Tw,
Xy —Q w tQl
Tw
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1 Qw 8
The last equality arises from the fact that this is the only way

one component of the coordinate differential can equal
another.

t HE'H 9
Which recovers for us the reciprocity relationship and shows
that HA | ‘A are reciprocal systems.
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S > g S Wy (bo‘o- S
COME » (wn)h g}
AE@S » (bhod woh )-

(0w )h g $
(ho woh)g$ m

(0 ¢ Jmsm
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COBd) (%Y )h ™8 'HE H
(%6 Y %Y h)HS HS "H
NS CO%A % OAfA
Furthermore, we can contract the last two bases and
obtain,

AH%) (%Y %Yh)HS Ht™H
(%6 Y %Y h )H
Y % H %Y h'H
NC O %oA %A EO
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e

* For two arbitrary vectors, ¢ and o, shom
HITEHE o) (© )YHITHHE )H'l H'HO
“COMA o) ( 60 )RHE H
f ohd T 60h)HS "H
(6hf 0 O hf 0)HS$ H
(o )COAA( )COAA
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‘\

For any two tensor fields| and’l, Show that,
Cl JACOAAItAQDI
(1 )JICOAA(F o0™HS H)JuUh™HS§ H)
T 00 h(CHI'H)(Ht™H)
T 60 hy 9 i 6uh
TTAODI

Dept of Systems Engineering, University of Lagos 54 oafak@unilag.edu.ng 12/27/2012



"H. Taking the covariant derivative wit endent
base, we have

CO®OA) 7 O6h™HS 'HS "H
This gives a third order tensor as we have seen.

Contracting on the last two bases,
AE® ) 7 6h™™M& "Hi'H

T O0h™H
i oh"H
ACOI
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ShowthatAO@I ) (AEQE COAA
(o) T 0 H§ H
AO®IT Y h'Hs "H

so that
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a covariant

T 6h0 f 00N
otAO®I 0TAOOI
Given a scalar point functiom and a vector field’l,
show that "H'l %al) %A ODI (C O %A l.
AO@) T (% )h™H
T (%0 % h)H
T %0 ™H T % h™H
(CO%A "I %A ODI
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Given thate (0)

. K Adf
Now,
’Q( ) Qe QA OA  OA
a8 ) S ae ot Moy M
as inner product is commutative. We can therefore
write that

Qe AdaQ—A A
Qo « ™Mo |AO|

dA

as required.
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show that its dive

The divergence of: is the scalar sum(*Yu )h.
Expanding the product covariant derivative we obtain,
AEE ™) (YO )h “YhO "YU h

(A EHOtT OE@ COMA

(A B0 4dC OAA
Recall that scalar product of two vectors is
commutative so that

AEPT) AdCOMATITAEO
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Express vectorkin the invariant fo
contravariantcomponents asf & "H. It follows that

AODHE T Y h (HE H)F
i Yhdd(CHS THH
T "Yh®dH
T (Y )h TH®
T (Y &)h"H
The last equality resulting from the fact that vectoq1=is
a constant vector. Clearly,

A O Addib
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Recall that the curl of atens
i Y h "H$ "H. Clearly therefore,

AO@IS o) 7 (6 0)hHS "H
T (6 hU ouh)Hs H

6 hU 'H§ 'H f o0 0h™H§ H
f 0 H)S (ohH) f O0Oh™HS (6 H)
(T 0 'HS H)(6 h'™HE 'H) ( 0 h'H
50 H) (@ NGCOAA AOYE ¢

(COAY TI (AdHE ¢

upon noting that the vector cross is a skew tensor.

Dept of Systems Engineering, University of Lagos 61 oafak@unilag.edu.ng 12/27/2012



T 7 (60 )h'H
(1 11 )60 )RH
(1 11 )06h0
6hy o60R oOhU
(60 )R (60)RTH
AHXS o o8 ¢)
sinceA H®S o) (60 )h'HE "Ht'™H (60 )h'H.
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\

Givena scalar point function%.and a seconebrder tensor field 4,
show that "H'l %)) %<H1 1 ((C O %A )1 where
[(C ORIA ]is the skew tensoff %k 'HS "
AOGIDKT (%'Y)h ™HE ™H
T (%Y % 'Yh)™H$ "H
T %Y '"H§ H % Y h'HS H
f % ™S H)(Y HS H) % “Yh'H
%A O 1 ((C OMA )
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A EBOOPI A 0@ K
Define the second order tensoryas

AOHRT “Yh™ME 'H "¥'HS H
The gradient of{is™§h "H§ "H$§ H
i Yh "H 'H§ "H
Clearly,

~—

AEDOPYI 7 “Yh "HE HE™H
i "Yh THQ
T Y h "H AOQ@ED)
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contained inq.

By the Divergence Theorem,
(riwi=QY  i[ (riPQw
' (o Q)|™Ht HQw
'[Q(dhe woh)|™HE™HQ®
Q@ @ @ J)ioe ceQohe

¢ Qw
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vectorsO anduv , the contravariantc
productisi 6 L .The required divergence is
contraction of the covariantw derivative of this quantity:
 60). T O6j0 T 0OU;

where we have treated the tensor  as a constant under the
covariant derivative.
Cyclically rearranging the RHS we obtain,

(f éo)ﬁ 0T O0f Of UOfp OT O0fp Of U

¢

where we have used the ansymmetric property of the tensor
T . The last expression shows clearly that

AEIO’T TAOQDIMTAQDI
as required.
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Liouville Formula

‘\

7

For a scalar variable, ifthe tensor; 1) | andf k — Show that— A Ai©)
A KD O @i
Proof:

Let’Ak QR sothat,i "AnlIn component form, we haveyY 0 Y.
Therefore,

&A i) &(T YY) F O (YYY O UYTYTY O UYUYUY)
fo(0UYYY YO YTY YYD Y)
i (6 v o [5y] [5v])yy
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Liouville4 EAT OAIl #1

‘\

(For example, the first boxed term yielfls 0 "Y'Y"Y

Which is symmetric as well aantisymmetricin ‘Gnd "Qlt
therefore vanishes. The same is true for all other such terms

SAKD T [(6Y)YY Y@ YYY Y'Y V)
o7 YYVYY
o@n )A A

as required.
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AOHT* Y h
O@OHPI T Y h'HIH
T Y h T "Yh
which obviously vanishes~on account of the symmetry
and antisymmetry inand Q In this case,
A O@IOA]

[ O AEDEGE COKIOAGRD)

(COBED
as(C OMAD) ¢ OBAHDif the order of

differentiation is immaterial and T is symmetric.
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‘\

Fora scalar functionl3 and a vectorb show that the
divergence of the vectorv B is equal to, It C OB A
B AEIO

(0 B)ﬁ BLUR UBH

Hence the result.
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T ([ 60 —
Expanding in the usual way, noting the relation between the
alternating tensors and theKroneckerdeltas,

P ()o)ﬁ 7 (60 060 )

T (6r0 060U ) 1 (6r0 06U )

( 717 )J6r0 060
' 77 00/ T

Op L O pbU OL jy O L

Which is the result we seek in indicial notation.
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Executive Summary
“

* Here are the names of your tormentors:

* Kronecker, Einstein, Gateauxtrechét Christoffel, Riccj Riemann

Gateaux gave us a powerful way to express the change, or differential
of any function of any order in a linear fashion no matter the
functional relationship constituting the function.
. 2Lan 1y a’ Q. . -
O "OINHT k IOEIGE | | ) ab K o] al | Q)
This is the Gateaux Differential. We showed this as a powerful super
differential as your old concept of differential is contained in it and

can be considered a special case of Gateaux
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Here comes MiFrechét!
.‘

* And, what did he say?

* He defines a kind of derivative with respect to the
variable whether that variable itself is a scalar, vector
or a tensor. Given the Gateaux differential, we write

O "CIRA) k T—(Ij) A

As the defining equation for theFrechetderivative. The
exact kind of product we have on the RHS as well as the
kind of quantity in the product is to be found.
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Three Cases for Vector Variable

7. "Ois a scalar function of a vector variable.
Here, the Gateaux differential is obviously a scalar and the

product is certainly a scalar product so thaic,—I IS necessarily a

vector quantity. If we expressl 0 "Hthe result of all earlier
proofs is simply that,

' o1 Q

= — H

T1T To
With the covariance of the index arising from the quotient
occurrence of a vector. This iIs the real definition of Grad or
Frechetderivative for a scalar function of a vector.
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2. Qs a vector function

The Gateaux here Is certainly a ve

()

have that—— is operating on the vectorA’| to produce

a vector! We conclude that—-= ( £ s nothing but a seconé

order tensor! ThlsFrechetderlvatlve, or the gradient of
a vector was what your teachers all along could never

tell you about! If¢  "O™H and as before, we write]l
0 "H, then we can say that,

T € T“OTHé H
I 10
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3. Gradient of a Tensor Function
\’

* You have already seen that the gradient increases the
order of any function by adding an extra basis at the
end. We can simply go on without any further and
simply say that for a tensor function of a vector, we
have

T—D T—H§ "H8 H
T Tu
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Differentiation of Fields

Given a vector point functiorf) (0 hw hw ) and its covari:
components,6 (w hw hw )h plglohx E OHAs thereciprocal
basis vectorsthen
P PR 6 .. TH_ \ .
O 0 HROIO E®O —‘(O H)QO — H —0 |Qw
Tw Tw )
Clearly,
0 o . H
1010y 1T,
Tw Tw I
And the projection of this quantity on the' Hdirection is,

& "H LTH E "H Ill"“H H TTH "HC
o fH g o0 JEH o HEH S gro
16 T"H . |
ol et
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Christoffel Symbols
\’

. 1T KHEH 1 OIOEAO
H A
~ T—d)gf“ H H¢T—‘ TS
ks ¢'H H¢T— k { %
T @ QS
This important guantity, necessary to quantify the

derivative of a tensor in general coordinates, is called
the Christoffel Symbolof the second kind.
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Derivatives in General Coordinates

ow write that, "

ro . 'H ... 160
o e e o (ol
* The quantity on the RHS is the component of the derivative of vector

along the "Hdirection using covariant components. It is the covariant
derivative of¢ . Using contravarlantcomponents we could write,

: To .. TH,\ . T

*  So that,

Using this, we can n

ro TO’H !

Tw Tw T @
*  The components of this in the direction oiH canbe obtained by taking a
dot product as before:

1o . 6 . T™H, : TO T ... 160 D) .
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Covariant Derivatives
“

The two results above are represented symbolically as,
r :

o0 1T e aia 1o (T
" te  leld o U7
Which are the components of the covariant derivatives in

terms of the covariant andcontravariantcomponents
respectively.

* It now becomes useful to establish the fact that our
definition of the Christoffel symbols here conforms to the
definition you find in the books using the transformation
rules to define the tensor quantities.
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Error Discussion

phB hod_et us write,

3 |H T™H TH
So that we now try to find what these components are. Recall the

standard procedure is to take an inner product of the equation with a
dual base vector:

gtH | 'Ht'H 1 'Ht'H 1 'HtH
From which we can immediately see that,

| 3t HK™O
A similar argument shows that 3t™Hk "Oand; 3tHk "O
This enablesustowritey | 'H T'H [ "H "OH. You can now see

that the dotting by "Hgave us the coefficients alongH contrary to what
| had claimed in the notes! | am sorry for the misleading information!
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Christoffel Symbols

* We observe tha C he cova

T T T TH
fTw Tolw Tolw To

* Taking the dot p[oduct with'H,

T%gm g(;—u'ij T%ﬂu)
g(TT—(b[*Hny] TT—Q[’H¢*H] Hf%' Hf%')
S(TT—Q[*H?H] TT—(b["‘HfH] Hﬁ%—l Hg%')
(TT—G)[’Hgé"H] TT—G)[”Hgé“H] TT—GO["H;é"H])

Qo1 10
Tw Tw Tw N
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The First Kind

* Which is the quantity defined as Sto
symbols of the first kindn the textbooks. It IS
therefore possible for us to write,

wiza 1 H o TH p/f™Q 17Q 17Q
[k 5 fH e cCch o ch>

It should be emphasized that th&hristoffel symbols,

even though the play a critical role in several tensor

relationships, are themselves NOT tensor quantities.

(Prove this). However, notice their symmetry in the

“‘and "QThe extension of this definition to the
Christoffel symbols of the second kind is immediate:
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The Second Kind

tensor, we nave

~

IR B - — 1T H, e '
Q[(}kaQ T—®¢~H QT—(bny T—(bH {3’9
T'H s
7o ?

Which connects the common definition of the second
Christoffel symbol with the one defined in the above
derivation. The relationship,

0 [Gia {é}g

apart from defining the relationship between theChristoffel
symbols of the first kind and that second kind, also
highlights, once more, the indexaising property of the
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Two Christoffel Symbols Related

so that,

A
o {Q}-Q o

Showing that the metric tensor can be used to lower
the contravariantindex of the Christoffel symbol of the
second kind to obtain theChristoffel symbol of the first
kind.
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Higher Order Tensors

higher order tensor fields in tern
symbols.

For a seconebrder tensorr), we can express the
components in dyadic form along the product basis as
follows:

AR "Y'HE "H "Y'"HA'H "¥'HS "H "¥Ha™H

This is perfectly analogous to our expanding vectors in
terms of basis and reciprocal bases. Derivatives of the
tensor may therefore be expressible in any of these
product bases. As an example, take the product
covariant bases.
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Higher Order Tensors

v - /
‘ — Had'H Y —a'H Y "HO ——
fTw Tw I W T @

Recall that— ¢ H { g}Qlt follows therefore that,

T_(bf{H (o m’{H (ofdH #H
(_(b {Q}QH>¢(H T8

Clearly— {Q}QH

(Obviously sinceHE A A @WRAAR bADOI IDIADE OE

Dept of Systems Engineering, University of Lagos 88 oafak@unilag.edu.ng 12/27/2012



Higher Order Tensors

3 5 R w | i 5 7 w Ty 17 | iy
o HH Y ([lg)aH Y e (i)
e (e v (G

{| %_)NH& H Y Ha H
Where

. Yy | " . . LY | .
¢ (R (BB
h Tw | | W

are the components of the covariant derivative of the tensaf in terms
of contravariantcomponents on the product covariant bases as shown.

T
e ‘ <

<
'
,I:~z 'nQ <
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Higher Order Tensors

~

Again, notice from previous derivation above{;rQ o ' #H so that,j
a Q%;H 3 "H Therefore,

T TY, .. L TH, ... TTH
; — HS H Y—S H Y HS —
o, 1o TG T o
—HE 'H Y3 'HE 'H “Y'HS 3 "H
Tw
"y o ) )
C—‘ Y3 Y3 )‘Hé H "Yyp HS 'H
Tw
So that
. Y .
Yi T_ Y 3 Y3
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Higher Order Tensors

derivative components In terms 0 <
components using the mixed product bases defined
above. It iIs a good exercise to derive these.

The formula for covariant differentiation of higher order
tensors follow the same kind of logic as the above
definitions. Each covariant index will produce an
additional term similar to that in 3 with a dummy index
supplanting the appropriate covariant index. In the
same way, eacltontravariantindex produces an
additional term like that in 3 with a dummy index
supplanting an appropriatecontravariantindex.
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Higher Order Mixed Tensors
\

Bh .
B IS the

¢ ¢

* The covariant derivative of the mixed tensoQ
most general case for the covariant derivative of an absolute

tensqr:

h Bh
O F Bh
To h Bh
h A | 1. h A | s h B g [ )s R OBH
T o ago® n Bh ago® n&h o0° [ BH
Q. 0 BA Q. hih E
i hBh i hBh
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The metric tensor components behave like constants under a
covariant differentiation. The proof that this is so is due to

Riccl:

e 1T . T )w

Qh PR {Q}QQ
ra . o
oy QKD [[QRD
'IE E(Y Q 1TQ 1Q ) B TQ 1°Q
Tw ¢\Tw Tw Tw ¢ Tw Tw
T8
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2 E A FhEodeO

seen from the rel:

00
The above can be differentiated¢ovariantlywith respect to
w to obtain

"QhQ "QQh ‘1 h
moRRh T_ [k {| h

oah g g 7

The contracti_on of Q with "Q h vanishes. Since we know
that the metric tensor cannot vanish in general, we can only
conclude that

"Qh T
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these two, we can treat the m

Its conjugateas constants in covariant differentiation
Notice that along with this proof, we also obtained
the result that the KroneckerDelta vanishes under a
partial derivative (an obvious fact since it is a
constant), as well as under the covariant derivative.
We summarize these results as follows:

The metric tensord) and ' Q as well as the alternating
tensorg are all constants under a covariant
differention. TheKroneckerelta] Is a constant under

both covariant as well as the regular partial
differentiation
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Integral Theorems
"

Thedivergence theorem is central to several other results In

Continuum Mechanics. We present here a generalized form
[Ogden] which states that,

Gauss Divergence Theorem
For a tensor field , The volume integral in the regiomO.. h

(COAYQU § 1 Qi

wherel is the outward drawn normal td mz the boundary

of NnB
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SpeclalCases: Vector Field

‘\

Vector field. Replacing the tensor with the vector fieldH
and contracting, we have,

(A E'RQ U HT Qi

Which is the usual form of the Gauss theorem.
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ScalarField

\

Fora scalar fielde the divergence becomes a gradient
and the scalar product on the RHS becomes a simple
multiplication. Hence the divergence theorem becomes,

(C O A¥QU %b Qi

The procedure here is valid and will become obviollis
we write,"H %s=where sis an arbitraryconstant
vector.
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For the LHS, no

COBed (%H)h™HS H
0% 'HE "H
The trace of which is,
0% HE™H D%
O%h  FiC O Ao
For the arbitrary constant vectosdwe therefore have that,
AHRBEDQUL Ft COAML Ft %b Qi

C 0 A6V %o Qi
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SecondOrder Tensor field

For a seconebrder tensorn, the Gauss
becomes,

(A ;HPQ U R1QI

The original outer product under the integral can be
expressed in dyadic form:

(COAYQU “Yh™M$ "HS "HQU
RS 1 Qi

Y 'HS "HS (¢ H)Qi
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SecondOrder Tensor field

e

"Yh™HS "HE "HQU Y& "HE "HS "HQI

Contracting, we have
“Yh ("HS "H)'HQU Y& ("HS H)'HQi
"Yh] "HQU Y& THQI
Y h"HQU Y &€ THQI
Which is the same as,

(A B{HIQ U A IQi
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Stokes Theorem

onsider the Euclidean Poin
the parametrization (Gurtin):

o0 o(_)where_ _nNT _
I |s said to be a closed curve If
o_) o)

Define”l(_) k o0 %(%)

For anyvector point function defined everywhere along ,
the line integral,

1ty 1(6(L)) t£ Q_ (o)) tLa_

Dept of Systems Engineering, University of Lagos 102 oafak@unilag.edu.ng 12/27/2012



Stokes Theorem
et %dbe a scalar field on, the ——

Chain rule immediately implies

that,
COMIM  COM& ""—%Q Q.
» 3
) o)) #oc))

So that for a close curve. C O iMoo 11

For a positively oriented surface bounded by a closed curve
(Gurtin), Stokes theorem is stated as follows:
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Stokes Theorem

EAOG I 2
flelds with common domaina regionT. Then given any
positively orientedsurfacen, with boundaryi closed curve,
InT

A (AORQIQ®
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Physical Components of Tensor

* The components of a vector or te artes
system are projections of the vector on directions
that have no dimensions and a value of unity.

* Thesecomponents therefore have the same units as
the vectors themselves.

* It is natural therefore to expect that the components
of a tensor have the same dimensions.

* In general, this is not soln curvilinear coordinates,
components of tensors do not necessarily have a
direct physical meaning. This comes from the fact
that base vectors are not guaranteed to have unit
values (Q pin general).
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Physical Components

orthogonal spherical polar, the /

HhHAT A.

* Thesecan be expressed in terms of dimensionless
unit vectors as,” "Hi' O B&'HPA T "M since the

magnitudes of the basis vectors areli’ O BahA T @
or (T hyT h/TQ) respectively.
* Asan example consider a force with theontravariant
components’ORO AT '®h
¢ OH "O'H "O'H
""O'H " OB#OH "OH
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Physical Components

Which may also be expressed in te
components, ——_—_
e 'OH "™OH "O'H8
* While these physical componentsORORO have the
dimensions of force, for thecontravariant
components normalized by the in terms of the unit
vectors along these axes to be consistent,

""O O EFORO must each be in the units of a
force. Hence;OKO A 1 "® may not themselves be in
force units. The consistency requirement implies,

'O "O0h O "OE¥fOh AT O O
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Physical Components

* For the same reasons, ifwe had u
components, the relationships,

. . O . . . .

* Themagnitudes of the reciprocal base vectors are
~-h——PA T @ While the physical components have the
dimensions of force;O ""0Oand™O ” O B&'O have the

are

dimensions of moment, whileO —and™O

iIn dimensions of force per unit length. Only the third
components in both cases are given in the dimensions of
force.
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but to solve the problem In"physica

* In anorthogonal systemof coordinates, to obtain a physical
component from a tensor component we must divide by the
magnitude of the relevant coordinate for each covariant
iIndex and multiply by eacltontravariantindex. To illustrate
this point, consider the evaluation of the physical

components of the symmetric tensor component§s or T or
T in spherical polar coordinates. Here, as we have seen, the
magnitudes of the base vectors/ T h/T h/TQ" or 'QhQ

andQ are” " O BbA T @ Using the rule specified above,
the table below computes the physical components from the

o ipree associated tensors as follows:

Ineering agos
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T "QQ

T QQ t 7 OE%

Physical Contravariant Covar
Component
o

"gz "Q ”

T T
Q" OB&

T T

- B

Wz P
WP P
WP -
W -
Wz -

QQ " OE%

T T
QQ "OB&

T T

LIPA
.
LIPN
Q tO0B&
LIPN
o L
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The metric tensor components

o () @are ()
ICICIN
) (19 () >

o (909 90

—a —n
°

—l

'O

(QOBNQOE) <Q P <Q/p ) (CQATO(QAT O

0
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f nce Is the contraction of the gradient. Whil Al
livergence directly it is often easier to use the comp yrmul quation Ex 15:
. . . O
tée "Op Ht'H "Oh P (m )
VQ Tw

! !

P [TT (QQQ0) = (QQQ0) T—(QQQO)]

QQQ

Recall that the physical (components having the same units as the tensor in question)
“omponents of acontravarianttensor are not equal to the tensor components unless
he coordinate system is Cartesian. The physical compon&dtQ "OQ(no sum oni).

n terms of the physical components therefore, the divergence becomes,
P I T s T mn
QQQ[T (QQ0p ) T(b(QQOc) ch(QQOG)
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Now the contravariantcomponent of gradient™O "Q ¢ h. IS in place
of the vector "O, we can write,
p1(yaQ-h)

SO To

given scalae , the Laplacian < is defined as;Q ¢ ; so that,

. Qe EJTCKmT°>

Tw
When coordinates are orthogonallQ "Q  mwhenever'Q "QExpanding
the computation formula therefore, we can write,

P T [QQQT - T /QQQT - T /QQQT
NN\l Q Tw/) To\l Q Tw/) To\l Q0 Tw

P T (feanl Y T finn! ® ' (Al ®
o 1 (anl?) Dnls) L(wnl)
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Exampleaboveshows that' Q  "Q the

required proof of orthogonality. Using the computation
formula in example 11, we may write for the oblate spheroidal
coordinates that,

B

JG e -) 1 o L P8

“Q1 (1 _) T ’ »\‘p _T y
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A HO ) A OQl \
The secongorder tensor (¢ ) Is defined ag 6 HS
‘H. Taking the covariant derivative with an independent

base, we have
CO®OA) 7 O6h™HS HS "H
This gives a third order tensor as we have seen.
Contracting on the last two bases,
AE® ) 7 O6h™HE Ht™H

7 oh'H
T _oh™H
AODI
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Coordinate transformations

* That Is, the choice of any three scalars can be used to
locate a point. We now introduce a transformation
(called a polar transformation) offaiuy © i o such
that, @ 1 AT%bandw 1 O BEé Note also that this

transformation is invertible:i /& & ,and%o
OAIT-
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Curvilinear Coordinates

* With such a transformation, we can |? e any point

in the 3D space with three scalars 601 instead of
our previous set{dnhx} Our posmon vector is now,
TOTAT% ‘ l- Cgm
“ where we deflne- @ 'SNo
different from & In order to complete our triad of
basis vectors, we need a third vectok? . In selecting

m ;- We want it to be such that{gg Ny hg } can form an
orthonormal basis.
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Cylindrical Polar coordinate system

Let

* To satisfy our conditions
] t- ,- t- TT, and\/ — p8

these requirements {gg i i } forms an

orthonormal (that is,each member has unit magnitude
anc_!_ey are pairwise orthogonjiriad just like

can be given a geometric interpretation. In either
case, it is the definition of theCylindrical Polar
coordinate system
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\

* Unlike our Cartesian system, we note that
{m %ol %ofig } as the first two of these are not

constants but vary with angular orientationgg
remains a constant vector as in the Cartesian case.
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Spherical Polar

iIntroduce two new scalars suc
way that the position vector,
1 g O "OFEg "Al-ggk’'m
* Here,i " OEMa ” Al-@As before, we can use three

scalars {" h-H%¢ instead of i 1) . In comparison to the
original CarteS|an system we began W|th we have that,

"OEBEHA | %@
k b .
from which it Is clear that the unit vectogg K
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Spherical Polar

Al-AT% Al-@E

* It Is easy to demonstrate the fact that these vectors
constitute another orthonormal set. Combining the two
transformations, we can move fron{ahodo} system of
coordinates to{” ¢ directly by the transformation
equations, e " OEJA 1 %w ” O EJO Bandd
AT -0

* Theorthonormal set of basis for the{” h-6¢ system is
{(m (—Foohg (—F6hm (%9}.

* Thisis the Spherical Polar Coordinate System
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Variable Bases

o

* Theretwo main points to note in transforming from
Cartesian to Cylindrical or Spherical polar coordinate
systems. The latter two (also called curvilinear
systems) have unit basis vector sets that are
dependent on location. Explicitly, we may write,

m (i Fo6T)
m | P6b0
m (i %6600
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* Of course, there are specific cases in which some of
these basis vectors are constants as we can see. It is
Instructive to note that curvilinear (so called because
coordinate lines are now curves rather than straight
lines) coordinates generally have basis vectors that
depend on the coordinate variables.

* Unlikethe Cartesian system, we will no longer be able
to assume that the derivatives of the basis vectors
vanish.
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* The second point to note is more subtle. While it is
true that a vector referred to a curvilinear basis will
have coordinate projections in each of the basis so
that, a typical vector

T O°'H O'H 0O'H
* when referred to the basis vectors"HhHhH}, for
position vectors, in order that the transformation

refers to the same position vector we started with in
the Cartesian system
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We have for Cylindrical Polar, the vector,
Tieb i %o Oy
and for Spherical Polar,
Tih-Hbo g —Hbo
* EXpressing position vectors in Curvilinear coordinates must
be done carefully. We do well to take into consideration
the fact that in curvilinear systems, the basis vectors are
not fully specified until they are expressly specified with

their locational dependencies.
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* It 1s only In this situation that we can express the
position vector of a specific location Spherical and
Cylindrical Polar coordinates are two more commonly
used curvilinear systems. Others will be introduced as
necessary in due course.
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Natural Bases

Begin i \
with coordinate variables( h| h
prove that the set of vectors,

{"M h h )J ¢ hoh )I 10 h oh )}

Il I Tl
Which we can write more compactly as

"Hk TTl—hQ pltlo

constitute an independent set. This set, with its dual set
of vectors, 'H such that'Ht "H | , constitute the

v Pal ~ Y v N

O. AOODOAT AAOGAOGe &£ O OEA AT 1
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Orthonormality of Natural Bases
“

* We can only guarantee the independence of the
bases for any arbitrary system. They may NOT be
normalized neither are they guaranteed of mutual
orthogonality.

HW. Show that the natural bases for Spherical and
Cylindrical polar systems are orthogonal but not
normalized. And that the dual natural bases for the
Cartesian system coincide.
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