
Tensor Calculus
Differentials & Directional Derivatives



We are presently concerned with Inner Product spaces 
in our treatment of the Mechanics of Continua. 
Consider a map,

╕ȡeᴼf
This maps from the domainV to Wɀboth of which are 

Euclidean vector spaces. The concepts of limit and 
continuity carries naturally from the real space to any 
Euclidean vector space. 

The Gateaux Differential
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Let ○ ᶰe and ◌ ᶰf, as usual we can say that the 
limit

ÌÉÍ
○O ○

╕○ ◌

if for any pre-assigned real number ‭ π, no matter 
how small, we can always find a real number  ‏ π
such that ╕○ ◌ ‭whenever ○ ○  .‏

The function is said to be continuous at ○ if ╕○
exists and ╕○ ◌

The Gateaux Differential
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Specifically, for ‌ᶰדlet this map be:

Ὀ╕●ȟ▐ ḳÌÉÍ
ᴼ

╕● ‌▐ ╕●

‌

Ὠ

Ὠ‌
╕● ‌▐

We focus attention on the second variable ▐while we allow 
the dependency on ●to be as general as possible. We shall 
show that while the above function can be any given function 
of ●(linear or nonlinear), the above map is always linear in ▐
irrespective of what kind of Euclidean space we are mapping 
from or into. It is called the Gateaux Differential. 

The Gateaux Differential

oafak@unilag.edu.ng  12/27/2012Dept of Systems Engineering, University of Lagos 4



Let us make the Gateaux differential a little more familiar in 
real space in two steps: First, we move to the real space and 
allow ὬᴼὨὼand we obtain,

ὈὊὼȟὨὼ ÌÉÍ
ᴼ

Ὂὼ ‌Ὠὼ Ὂὼ

‌

Ὠ

Ὠ‌
Ὂὼ ‌Ὠὼ

And let ‌ὨὼOɝὼ, the middle term becomes,

ÌÉÍ
ᴼ

Ὂὼ ɝὼ Ὂὼ

ɝὼ
Ὠὼ

ὨὊ

Ὠὼ
Ὠὼ

from which it is obvious that the Gateaux derivative is a 
generalization of the well-known differential from 
elementary calculus. The Gateaux differential helps to 
compute a local linear approximation of any function (linear 
or nonlinear). 

The Gateaux Differential
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It is easily shown that the Gateaux differential is linear 
in its second argument, ie, for‌ᶰa

Ὀ╕●ȟ‌▐ ‌Ὀ╕●ȟ▐

Furthermore, 
Ὀ╕●ȟ▌ ▐ Ὀ╕●ȟ▌ Ὀ╕●ȟ▐

and that for ‌ȟ‍ᶰa
Ὀ╕●ȟ‌▌ ‍▐ ‌Ὀ╕●ȟ▌ ‍Ὀ╕●ȟ▐

The Gateaux Differential
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Ὀ╕●ȟ‍▐ ÌÉÍ
ᴼ

╕● ‌‍▐ ╕●

‌

We introduce the real number Ὧ ‌‍ÓÏÔÈÁÔ‌ ȟ

Ὀ╕●ȟ‍▐ ‍ÌÉÍ
ᴼ

╕● Ὧ▐ ╕●

Ὧ
‍Ὀ╕●ȟ▐

In a similar way,

Ὀ╕●ȟ▐ ▌ ÌÉÍ
ᴼ

╕● ‌▐ ‌▌ ╕●

‌

‍ÌÉÍ
ᴼ

╕● ‌▐ ‌▌ ╕● ‌▌ ╕● ‌▌ ╕●

‌
Ὀ╕●ȟ▐ Ὀ╕●ȟ▌
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The Frechït derivative or gradient of a differentiable 
function is the linear operator, ÇÒÁÄ╕○ such that, for 
Ὠ○ᶰe, 

Ὠ╕○

Ὠ○
Ὠ○ḳ ÇÒÁÄ╕○ Ὠ○ḳὈ╕○ȟὨ○

Obviously, ÇÒÁÄ╕○ is a tensor because it is a linear 
transformation from one Euclidean vector space to 
another. Its linearity derives from the second argument 
of the RHS.

The FrechétDerivative
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The Gradient of a Differentiable Real-Valued Function
For a real vector function, we have the map:

Ὢȡeᴼa
The Gateaux differential in this case takes two vector 
arguments and maps to a real value:

ὈὪȡe e ᴼa

This is the classical definition of the inner product so that we 
can define the differential as,

ὨὪ○

Ὠ○
ẗὨ○ḳὈὪ○ȟὨ○

This quantity, 
ὨὪ○

Ὠ○
defined by the above equation, is clearly a vector. 

Differentiable Real-Valued Function
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It is the gradient of the scalar valued function of the 
vector variable. We now proceed to find its components 
in general coordinates. To do this, we choose a basis 
Ἧ Ṓe. On such a basis, the function, 

○ ὺἯ

and,

Ὢ○ ὪὺἯ

we may also express the independent vector 
Ὠ○ ὨὺἯ

on this basis.

Real-Valued Function
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The Gateaux differential in the direction of the basis vector Ἧ is,

ὈὪ○ȟἯ ÌÉÍ
ᴼ

Ὢ○ ‌Ἧ Ὢ○

‌
ÌÉÍ
ᴼ

ὪὺἯ ‌Ἧ ὪὺἯ

‌

ÌÉÍ
ᴼ

Ὢ ὺ ‏‌ Ἧ ὪὺἯ

‌
As the function Ὢdoes not depend on the vector basis, we can 
substitute the vector function by the real function of the components 
ὺȟὺȟὺ so that,

ὪὺἯ Ὢὺȟὺȟὺ

in which case, the above differential, similar to the real case discussed 
earlier becomes,

ὈὪ○ȟἯ
‬Ὢὺȟὺȟὺ

‬ὺ

Real-Valued Function
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Of course, it is now obvious that the gradient 
○

○
of 

the scalar valued vector function, expressed in its dual 
basis must be,

ὨὪ○

Ὠ○

‬Ὢὺȟὺȟὺ

‬ὺ
Ἧ

so that we can recover,

ὈὪ○ȟἯ
ὨὪ○

Ὠ○
ẗὨ○

‬Ὢὺȟὺȟὺ

‬ὺ
ἯẗἯ

‬Ὢὺȟὺȟὺ

‬ὺ
‏

‬Ὢὺȟὺȟὺ

‬ὺ
Hence we obtain the well-known result that  

ÇÒÁÄὪ○
ὨὪ○

Ὠ○

‬Ὢὺȟὺȟὺ

‬ὺ
Ἧ

which defines the Frechétderivative of a scalar valued 
function with respect to its vector argument.
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*The Gradient of a Differentiable Vector valued Function

The definition of the Frechétclearly shows that the gradient 
of a vector-valued function is itself a second order tensor. We 
now find the components of this tensor in general 
coordinates. To do this, we choose a basis Ἧ Ṓe. On such 
a basis, the function,

╕○ Ὂ ○Ἧ

The functional dependency on the basis vectors are ignorable 
on account of the fact that the components themselves are 
fixed with respect to the basis. We can therefore write,

╕○ Ὂ ὺȟὺȟὺ Ἧ

Vector valued Function

oafak@unilag.edu.ng  12/27/2012Dept of Systems Engineering, University of Lagos 13



Ὀ╕○ȟὨ○ Ὀ╕ὺἯȟὨὺἯ

Ὀ╕ὺἯȟἯ Ὠὺ

ὈὊ ὺἯȟἯ ἯὨὺ

Again, upon noting that the functions ὈὊ ὺἯȟἯ , 

Ὧ ρȟςȟσare not functions of the vector basis, they can 
be written as functions of the scalar components alone 
so that we have, as before,

Ὀ╕○ȟὨ○ ὈὊ ὺἯȟἯ ἯὨὺ

ὈὊ ○ȟἯ ἯὨὺ

Vector Derivatives
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Which we can compare to the earlier case of scalar valued 
function and easily obtain, 

Ὀ╕○ȟὨ○
‬Ὂ ὺȟὺȟὺ

‬ὺ
ἯẗἯ ἯὨὺ

‬Ὂ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ ἯὨὺ

‬Ὂ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ Ὠ○

Ὠ╕○

Ὠ○
Ὠ○ḳ ÇÒÁÄ╕○ Ὠ○

Clearly, the tensor gradient of the vector-valued vector function 
is,

Ὠ╕○

Ὠ○
ÇÒÁÄ╕○

‬Ὂ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ

Where due attention should be paid to the covariance of the 
quotient indices in contrast to the contravarianceof the non 
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The trace of this gradient is called the divergence of the 
function:

ÄÉÖ╕○ ÔÒ
‬Ὂ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ

‬Ὂ ὺȟὺȟὺ

‬ὺ
Ἧ ẗἯ

‬Ὂ ὺȟὺȟὺ

‬ὺ
‏

‬Ὂ ὺȟὺȟὺ

‬ὺ

The Trace & Divergence
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Consider the mapping,
╣ȡe ᴼc

Which maps from an inner product space to a tensor space. 
The Gateaux differential in this case now takes two vectors 
and produces a tensor:

Ὀ╣ȡe eᴼc
With the usual notation, we may write,

Ὀ╣○ȟὨ○ Ὀ╣ὺἯȟὨὺἯ Ὀ╣ὺἯȟὨὺἯ

Ὠ╣○

Ὠ○
Ὠ○ḳ ÇÒÁÄ╣○ Ὠ○

ὈὝ ὺἯȟὨὺἯ Ἧ ṧἯ ὈὝ ○ȟἯ Ἧ

Each of these nine functions look like the real differential of 
several variables we considered earlier.

Tensor-Valued Vector Function
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The independence of the basis vectors imply, as usual, that 

ὈὝ ○ȟἯ
‬Ὕ ὺȟὺȟὺ

‬ὺ
so that,

Ὀ╣○ȟὨ○ ὈὝ ○ȟἯ Ἧ ṧἯ Ὠὺ

‬Ὕ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ Ὠὺ

‬Ὕ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ ἯẗὨ○

‬Ὕ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ ṧ Ἧ Ὠ○

Ὠ╣○

Ὠ○
Ὠ○

ḳ ÇÒÁÄ╣○ Ὠ○
Which defines the third-order tensor, 

Ὠ╣○

Ὠ○
ÇÒÁÄ╣○

‬Ὕ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ ṧ Ἧ

and with no further ado, we can see that a third-order tensor 
transforms a vector into a second order tensor. oafak@unilag.edu.ng  12/27/2012Dept of Systems Engineering, University of Lagos 18



The divergence operation can be defined in several ways. 
Most common is achieved by the contraction of the last two 
basis so that,

ÄÉÖ╣○
‬Ὕ ὺȟὺȟὺ

‬ὺ
Ἧ ṧἯ ẗἯ

‬Ὕ ὺȟὺȟὺ

‬ὺ
Ἧ Ἧ ẗἯ

‬Ὕ ὺȟὺȟὺ

‬ὺ
Ἧ‏

It can easily be shown that this is the particular vector that 
gives, for all constant vectors ╪,

ÄÉÖ╣╪ḳÄÉÖ╣╪

The Divergence of a Tensor Function
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Two other kinds of functions are critically important in 
our study. These are real valued functions of tensors 
and tensor-valued functions of tensors. Examples in the 
first case are the invariants of the tensor function that 
we have already seen. We can express stress in terms of 
strains and vice versa. These are tensor-valued functions 
of tensors. The derivatives of such real and tensor 
functions arise in our analysis of continua. In this section 
these are shown to result from the appropriate Gateaux 
differentials. The gradients or Frechétderivatives will be 
extracted once we can obtain the Gateaux differentials.

Real-Valued Tensor Functions
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Consider the Map:
Ὢȡcᴼa

The Gateaux differential in this case takes two tensor 
arguments and maps to a real value:

ὈὪȡc cᴼa
Which is, as usual, linear in the second argument. The Frechét
derivative can be expressed as the first component of the 
following scalar product:

ὈὪ╣ȟὨ╣
ὨὪ╣

Ὠ╣
ȡὨ╣

which, we recall, is the trace of the contraction of one tensor 
with the transpose of the other second-order tensors. This is 
a scalar quantity. 

FrechétDerivative
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Guided by the previous result of the gradient of the scalar valued 
function of a vector, it is not difficult to see that,

ὨὪ╣

Ὠ╣

‬ὪὝ ȟὝ ȟȣȟὝ

‬Ὕ
Ἧ ṧἯ

In the dual to the same basis, we can write,

Ὠ╣ ὨὝἯṧἯ

Clearly, 
ὨὪ╣

Ὠ╣
ȡὨ╣

‬ὪὝ ȟὝ ȟȣȟὝ

‬Ὕ
Ἧ ṧἯ ȡὨὝἯṧἯ

‬ὪὝ ȟὝ ȟȣȟὝ

‬Ὕ
ὨὝ

Again, note the covariance of the quotient indices.
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Let ἡbe a symmetric and positive definite tensor and let
Ὅ╢ȟὍ╢ÁÎÄὍ╢ be the three principal invariants of

ἡshow that (a) 
╘ ἡ

▀ἡ
ἓthe identity tensor, (b) 

╘ ἡ

▀ἡ

Ὅἡἓ ἡand (c) 
ἡ

ἡ
Ὅἡἡ

╘ ἡ

ἡ
can be written in the invariant component form 

as,
ὨὍἡ

Ὠἡ

ὨὍἡ

ὨὛ
ἯṧἯ

Examples
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Recall that Ὅἡ ÔÒἡ Ὓ hence
ὨÔÒἡ

Ὠἡ

ὨὍἡ

ὨὛ
ἯṧἯ

ὨὛ

ὨὛ
ἯṧἯ

ἯṧἯ‏‏

ἯṧἯ‏ ἓ

which is the identity tensor as expected.

(a) Continued
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ἡ

ἡ
in a similar waycan be written in the invariant component form 

as,
‬Ὅἡ

‬ἡ

ρ

ς

‬

‬Ὓ
ὛὛ ὛὛ ἯṧἯ

where we have utilized the fact that Ὅἡ ÔÒ ἡ ÔÒἡ . 
Consequently,

‬Ὅἡ

‬ἡ

ρ

ς

‬

‬Ὓ
ὛὛ ὛὛ ἯṧἯ

ρ

ς
Ὓ‏‏ Ὓ‏‏ Ὓ‏‏ Ὓ‏‏ ἯṧἯ

ρ

ς
Ὓ‏ Ὓ‏ Ὓ Ὓ ἯṧἯ

Ὓ‏ Ὓ ἯṧἯ Ὅἡἓ ἡ

(b) 
ἡ

ἡ
Ὅἡἓ ἡ
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*
╘ ἡ

ἡ

ἡ

ἡ
ἡἫ

*the cofactor of ἡ. ClearlyἡἫ ÄÅÔἡἡ ╘ ἡἡ as required. Details of 
this for the contravariant components of a tensor is presented below. Let

ÄÅÔἡḳ ἡḳὛ
ρ

σȦ
‭ ‭ ὛὛὛ

Differentiating wrt Ὓ , we obtain,

‬Ὓ

‬Ὓ
Ἧ ṧἯ

ρ

σȦ
‭ ‭

‬Ὓ

‬Ὓ
ὛὛ Ὓ

‬Ὓ

‬Ὓ
Ὓ ὛὛ

‬Ὓ

‬Ὓ
Ἧ ṧἯ

ρ

σȦ
‭ ‭ ὛὛ‏‏ Ὓ‏‏Ὓ ὛὛ‏‏ Ἧ ṧἯ

ρ

σȦ
‭ ‭ ὛὛ ὛὛ ὛὛ Ἧ ṧἯ

ρ

ςȦ
‭ ‭ ὛὛ Ἧ ṧἯḳ Ὓ Ἧ ṧἯ

Which is the cofactor of Ὓ or ἡ
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Consider the function Ὢ╢ ÔÒ╢ where Ὧᶰדȟand 

╢is a tensor.

Ὢ╢ ÔÒ╢ ╢ȡἓ

To be specific, let Ὧ σ.

Real Tensor Functions
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The Gateaux differential in this case,

ὈὪ╢ȟὨ╢
Ὠ

Ὠ‌
Ὢ╢ ‌Ὠ╢

Ὠ

Ὠ‌
ÔÒ╢ ‌Ὠ╢

Ὠ

Ὠ‌
ÔÒ╢ ‌Ὠ╢ ╢ ‌Ὠ╢ ╢ ‌Ὠ╢

ÔÒ
Ὠ

Ὠ‌
╢ ‌Ὠ╢ ╢ ‌Ὠ╢ ╢ ‌Ὠ╢

ÔÒὨ╢╢ ‌Ὠ╢ ╢ ‌Ὠ╢ ╢ ‌Ὠ╢Ὠ╢╢ ‌Ὠ╢

Real Tensor Functions
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With the last equality coming from the definition of the 
Inner product while noting that a circular permutation 
does not alter the value of the trace. It is easy to 
establish inductively that in the most general case, for 
Ὧ π, we have, 

ὈὪ╢ȟὨ╢ Ὧ╢ ȡὨ╢

Clearly,
Ὠ

Ὠ╢
ÔÒ╢ Ὧ╢

Real Tensor Functions
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When Ὧ ρ, 

ὈὪ╢ȟὨ╢
Ὠ

Ὠ‌
Ὢ╢ ‌Ὠ╢

Ὠ

Ὠ‌
ÔÒ╢ ‌Ὠ╢

ÔÒἓὨ╢ ἓȡὨ╢

Or that,
Ὠ

Ὠ╢
ÔÒ╢ ἓȢ

Real Tensor Functions
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Derivatives of the other two invariants of the tensor ╢
can be found as follows:

Ὠ

Ὠ╢
Ὅ╢

ρ

ς

Ὠ

Ὠ╢
ÔÒ╢ ÔÒ╢

ρ

ς
ςÔÒ╢ἓ ς╢ ÔÒ╢ἓ ╢

Ȣ

Real Tensor Functions
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To Determine the derivative of the third invariant, we 
begin with the trace of the Cayley-Hamilton for ╢:
ÔÒ╢ Ὅ╢ Ὅ╢ Ὅἓ ÔÒ╢ ὍÔÒ╢ ὍÔÒ╢
σὍ π

Therefore,
σὍ ÔÒ╢ ὍÔÒ╢ ὍÔÒ╢

Ὅ╢
ρ

ς
ÔÒ ╢ ÔÒ╢

Ȣ

Real Tensor Functions
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We can therefore write,
σὍ╢

ÔÒ╢ ÔÒ╢ÔÒ╢
ρ

ς
ÔÒ ╢ ÔÒ╢ ÔÒ╢

so that, in terms of traces only,

Ὅ╢
ρ

φ
ÔÒ╢ σÔÒ╢ÔÒ╢ ςÔÒ╢

Differentiating the Invariants
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Clearly,
ὨὍ╢

Ὠ╢

ρ

φ
σÔÒ ╢ἓ σÔÒ╢ σÔÒ╢ς╢ ς σ╢

Ὅἓ ÔÒ╢╢ ╢

Real Tensor Functions
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In Classical Theory, the world is a Euclidean Point Space 
of dimension three. We shall define this concept now 
and consequently give specific meanings to related 
concepts such as 

ÁFrames of Reference, 

ÁCoordinate Systems and 

ÁGlobal Charts

The Euclidean Point Space
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ÁScalars, Vectors and Tensors we will deal with in 
general vary from point to point in the material. They 
are therefore to be regarded as functions of position 
in the physical space occupied. 

ÁSuch functions, associated with positions in the 
Euclidean point space,  are called fields. 

ÁWe will therefore be dealing with scalar, vector and 
tensor fields.

The Euclidean Point Space
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*The Euclidean Point Space ꜡is a set of elements 
called points. For each pair of points ●ȟ◐ᶰ ,꜡ 
◊ɱ●ȟ◐ ᶰTwith the following two properties:

1. ◊●ȟ◐ ◊●ȟ◑ ◊◑ȟ◐ ●ᶅȟ◐ȟ◑ɴ ꜡

2. ◊●ȟ◐ ◊●ȟ◑ ᵾ ◐ ◑

Based on these two, we proceed to show that,
◊●ȟ●

And that,
◊●ȟ◑ ◊◑ȟ●

The Euclidean Point Space
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From property 1, let ◐ᴼ●it is clear that,
◊●ȟ● ◊●ȟ◑ ◊◑ȟ●

And it we further allow ◑O ●ȟwe find that,
◊●ȟ● ◊●ȟ● ◊●ȟ● ς◊●ȟ●

Which clearly shows that ◊●ȟ● ▫the zero vector.

Similarly, from the above, we find that,
◊●ȟ● ▫ ◊●ȟ◑ ◊◑ȟ●

So that ◊●ȟ◑ ◊◑ȟ●

The Euclidean Point Space
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Coordinate System
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Coordinate System
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Note that ꜡ is NOT a vector space. In our discussion, the 
vector space E to which ◊belongs, is associated as we 
have shown. It is customary to oscillate between these 
two spaces. When we are talking about the vectors, 
they are in E  while the points are in ꜡ . 
We adopt the convention that ●◐ḳ◊●ȟ◐ referring 
to the vector ◊. If therefore we choose an arbitrarily 
fixed point ᶰ ȟ꜡we are associating ● , ◐ and 
◑ respectively with ◊●ȟ , ◊◐ȟ and ◊◑ȟ . 

These are vectors based on the points ●ȟ◐and ◑with 
reference to the origin chosen. To emphasize the  
association with both points of ꜡ as well as members of 
E they are called Position Vectors.

Position Vectors
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Recall that by property 1, 
●◐ḳ◊●ȟ◐ ◊●ȟ ◊ ȟ◐

Furthermore, we have deduced that ◊ ȟ◐ ◊◐ȟ

We may therefore write that,
●◐ ● ◐

Which, when there is no ambiguity concerning the 
chosen origin, we can write as, 

●◐ ● ◐

And the distance between the two is, 

▀●◐ ▀● ◐ ● ◐

Length in the Point Space
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*The norm of a vector is the square root of the inner 
product of the vector with itself. If the coordinates of 

●and ◐on a set of independent vectors are ὼand ώ, 
then the distance we seek is,

▀● ◐ ● ◐ Ὣ ὼ ώ ὼ ώ

The more familiar Pythagorean form occurring only 
when Ὣ ρ.

Metric Properties
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*Consider a Cartesian coordinate system 
ὼȟώȟᾀÏÒώȟώÁÎÄώwith an orthogonal basis. Let us 
now have the possibility of transforming to another 
coordinate system of an arbitrary nature: ὼȟὼȟὼ. 
We can represent the transformation and its inverse 
in the equations:

*ώ ώ ὼȟὼȟὼ ȟὼ ὼ ώȟώȟώ

*And if the Jacobianof transformation,

Coordinate Transformations
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‬ώ

‬ὼ
ḳ
‬ώȟώȟώ

‬ὼȟὼȟὼ
ḳ

‬ώ

‬ὼ

‬ώ

‬ὼ

‬ώ

‬ὼ
‬ώ

‬ὼ

‬ώ

‬ὼ

‬ώ

‬ὼ
‬ώ

‬ὼ

‬ώ

‬ὼ

‬ώ

‬ὼ
does not vanish, then the inverse transformation will exist. 
So that, 

ὼ ὼ ώȟώȟώ

JacobianDeterminant
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Given a position vector
Ἲ Ἲὼȟὼȟὼ

*In the new coordinate system, we can form a set of three 
vectors,

Ἧ
‬Ἲ

‬ὼ
ȟὭ ρȟςȟσ

Which represent vectors along the tangents to the 
coordinate lines. (This is easily established for the Cartesian 
system and it is true in all systems. Ἲ Ἲὼȟὼȟὼ ώἱ
ώἲ ώἳ
So that

ἱ
‬Ἲ

‬ώ
ȟἲ

‬Ἲ

‬ώ
ÁÎÄἳ

‬Ἲ

‬ώ
The fact that this is true in the general case is easily seen 
when we consider that along those lines, only the variable we 
are differentiating with respect to varies. Consider the 
general case where,

Ἲ Ἲὼȟὼȟὼ
The total differential of Ἲis simply,
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ὨἺ
‬Ἲ

‬ὼ
Ὠὼ

‬Ἲ

‬ὼ
Ὠὼ

‬Ἲ

‬ὼ
Ὠὼ

ḳὨὼἯ ὨὼἯ ὨὼἯ

With Ἧ ὼȟὼȟὼ ȟὭ ρȟςȟσnow depending in general 
on ὼȟὼÁÎÄὼ now forming a basis on which we can 
describe other vectors in the coordinate system. We 
have no guarantees that this vectors are unit in length 
nor that they are orthogonal to one another. In the 
Cartesian case, ἯȟὭ ρȟςȟσare constants, normalized 
and orthogonal. They are our familiar 

ἱ
‬Ἲ

‬ώ
ȟἲ

‬Ἲ

‬ώ
ÁÎÄἳ

‬Ἲ

‬ώ
Ȣ

Natural Dual Bases
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We now proceed to show that the set of basis vectors, 
Ἧḳ​ὼ

is reciprocal to Ἧ. The total differential ὨἺcan be written in terms 
of partial differentials as,

ὨἺ
‬Ἲ

‬ώ
Ὠώ

Which when expressed in component form yields,

Ὠὼ
‬ὼ

‬ώ
Ὠώ

‬ὼ

‬ώ
Ὠώ

‬ὼ

‬ώ
Ὠώ

Ὠὼ
‬ὼ

‬ώ
Ὠώ

‬ὼ

‬ώ
Ὠώ

‬ὼ

‬ώ
Ὠώ

Ὠὼ
‬ὼ

‬ώ
Ὠώ

‬ὼ

‬ώ
Ὠώ

‬ὼ

‬ώ
Ὠώ

Or, more compactly that,

Ὠὼ
‬ὼ

‬ώ
Ὠώ ​ὼẗὨἺ
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In Cartesian coordinates, ώȟὭ ρȟȢȢȟσfor any scalar field 
‰ ώȟώȟώ ,

‬‰

‬ώ
Ὠώ

‬‰

‬ὼ
Ὠὼ

‬‰

‬ώ
Ὠώ

‬‰

‬ᾀ
Ὠᾀ ÇÒÁÄ‰ẗὨἺ

We are treating each curvilinear coordinate as a scalar field, 
ὼ ὼ ώȟώȟώ .

Ὠὼ ​ὼẗ
‬Ἲ

‬ὼ
Ὠὼ

ἯẗἯ Ὠὼ

Ὠὼ‏ Ȣ

The last equality arises from the fact that this is the only way 
one component of the coordinate differential can equal 
another.

ᵼἯẗἯ ‏

Which recovers for us the reciprocity relationship and shows 
that ἯÁÎÄἯ are reciprocal systems.
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The position vector in Cartesian coordinates is  ► ●░▄░. Show 
that (a) ἬἱἾ► ȟ(b) ἬἱἾ►ṧ► ►ȟ(c) ἬἱἾ► ȟand (d) 
ἯἺἩἬ► and (e) ἫἽἺἴ►ṧ► ►

ÇÒÁÄ► ὼȟ▒▄ṧ▄▒
▒▄ṧ▄‏

ÄÉÖ► ὼȟ▒▄ẗ▄▒
‏‏ ‏ σȢ

►ṧ► ὼ▄ṧὼ▄ ὼὼ▄ṧ▄▒
ÇÒÁÄ►ṧ► ὼὼȟ▄ṧ▄▒ṧ▄▓

ÄÉÖ►ṧ► ὼȟὼ ὼὼȟ ▄ṧ▄▒ẗ▄▓
▒●‏ ‏░● ▄‏ ▓●‏ ‏░● ▄

τὼ▄ τ►

ÃÕÒÌ►ṧ► ‭ ὼὼ ȟ▄ ṧ▄░
‭ ὼȟὼ ὼὼȟ ▄ ṧ▄░
‭ ‏ ὼ ὼ‏ ▄ ṧ▄░
‭ ὼ▄ ṧ▄░ ‭ ὼ▄ ṧ▄░

‭ ὼ▄ ṧ▄░ ►
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For a scalar field ꜚ and a tensor field ἢshow that ἯἺἩἬ
ꜚἢ ꜚἯἺἩἬἢ ἢṧἯἺἩἬꜚ. Also show that ἬἱἾ
ꜚἢ ꜚἬἱἾἢ ἢἯἺἩἬꜚ.

ÇÒÁÄ‰ἢ ‰Ὕ ȟἯṧἯṧἯ

‰ȟὝ ‰Ὕ ȟ ἯṧἯṧἯ

ἢṧÇÒÁÄ‰ ‰ÇÒÁÄἢ

Furthermore, we can contract the last two bases and 
obtain,

ÄÉÖ‰ἢ ‰ȟὝ ‰Ὕ ȟ ἯṧἯẗἯ

‰ȟὝ ‰Ὕ ȟ Ἧ‏

Ὕ ‰ȟἯ ‰Ὕ ȟἯ
ἢÇÒÁÄ‰ ‰ÄÉÖἢ

oafak@unilag.edu.ng  12/27/2012Dept of Systems Engineering, University of Lagos 52



*For two arbitrary vectors, ◊and ○, show that 
ἯἺἩἬ◊ṧ○ ◊ ἯἺἩἬ○○ ἯἺἩἬ◊

*ÇÒÁÄ◊ṧ○ ‭ όὺ ȟἯṧἯ

‭ όȟὺ ‭ όὺȟἯṧἯ

όȟ‭ ὺ ὺȟ‭ ό ἯṧἯ

○ ÇÒÁÄ◊ ◊ ÇÒÁÄ○
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For any two tensor fields Ἵand Ἶ, Show that, 
Ἵ ȡÇÒÁÄἾ ἽẗÃÕÒÌἾ

Ἵ ȡÇÒÁÄἾ ‭ όἯṧἯ ȡὺȟἯ ṧἯ

‭ όὺȟ ἯẗἯ Ἧ ẗἯ

‭ όὺȟ‏‏ ‭ όὺȟ

ἽẗÃÕÒÌἾ
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For a vector field ◊, show that ἯἺἩἬ◊ is a third 
ranked tensor. Hence or otherwise show that 
ἬἱἾ◊ ἫἽἺἴ◊.

The secondɀorder tensor ◊ is defined as ‭ όἯṧ

Ἧ . Taking the covariant derivative with an independent 
base, we have

ÇÒÁÄ◊ ‭ όȟἯṧἯ ṧἯ

This gives a third order tensor as we have seen. 
Contracting on the last two bases, 

ÄÉÖ◊ ‭ όȟἯṧἯ ẗἯ

‭ όȟἯ‏

‭ όȟἯ

ÃÕÒÌ◊
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Show that ἫἽἺἴ‰ἓ ÇÒÁÄ‰

Note that ‰ἓ ‰Ὣ Ἧ ṧἯ , and that ÃÕÒÌ╣

‭ Ὕ ȟἯṧἯ so that,

ÃÕÒÌ‰ἓ ‭ ‰Ὣ ȟ▒ἯṧἯ

‭ ‰ȟ▒Ὣ ἯṧἯ ‭ ‰ȟ▒Ἧ

ÇÒÁÄ‰

Show that ÃÕÒÌ○ ÄÉÖ○ἓ ÇÒÁÄ○

○ ‭ ὺἯ ṧἯ

ÃÕÒÌἢ ‭ Ὕ ȟἯṧἯ

so that 

ÃÕÒÌ○ ‭ ‭ ὺȟἯṧἯ

Ὣ Ὣ Ὣ Ὣ ὺȟἯṧἯ

ὺȟἯ ṧἯ ὺȟἯṧἯ

ÄÉÖἾἓ ÇÒÁÄἾ
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Show that ἬἱἾ◊ ○ ○ẗἫἽἺἴ◊ ◊ẗἫἽἺἴ○

ÄÉÖ◊ ○ ‭ όὺ ȟ

Noting that the tensor ‭ behaves as a constant under 
a covariant differentiation, we can write,

ÄÉÖ◊ ○ ‭ όὺ ȟ

‭ όȟὺ ‭ όὺȟ

○ẗÃÕÒÌ◊ ◊ẗÃÕÒÌ○

Given a scalar point function הand a vector field Ἶ, 
show that ἫἽἺἴ‰Ἶ ‰ÃÕÒÌἾ ÇÒÁÄ‰ Ἶ.

ÃÕÒÌ‰Ἶ ‭ ‰ὺ ȟἯ

‭ ‰ȟὺ ‰ὺȟἯ

‭ ‰ȟὺἯ ‭ ‰ὺȟἯ

ÇÒÁÄ‰ Ἶ ‰ÃÕÒÌἾ
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Given that •ὸ Ἃὸ , Show that •ὸ
Ἃ

Ἃ
ȡἋ

• ḳἋȡἋ

Now,
Ὠ

Ὠὸ
• ς•

Ὠ•

Ὠὸ

ὨἋ

Ὠὸ
ȡἋ Ἃȡ

ὨἋ

Ὠὸ
ςἋȡ
ὨἋ

Ὠὸ
as inner product is commutative. We can therefore 
write that 

Ὠ•

Ὠὸ

Ἃ

•
ȡ
ὨἋ

Ὠὸ

Ἃ

Ἃὸ
ȡἋ

as required.
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Given a tensor field ╣, obtain the vector ◌ḳ╣ἢἾand 
show that its divergenceis ╣ȡ Ἶ ἾẗἬἱἾ╣

The divergence of ◌is the scalar sum, Ὕὺ ȟ. 

Expanding the product covariant derivative we obtain,

ÄÉÖ╣Ἶ Ὕὺ ȟ Ὕȟὺ Ὕὺȟ

ÄÉÖ╣ẗἾ ÔÒ╣ÇÒÁÄἾ

ÄÉÖ╣ẗἾ ╣ȡÇÒÁÄἾ

Recall that scalar product of two vectors is 
commutative so that 

ÄÉÖ╣Ἶ ╣ȡÇÒÁÄἾ ἾẗÄÉÖ╣
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For a second-order tensor ╣define ÃÕÒÌ╣ḳ

‭ ╣ ȟἯ░ṧἯ
♪show that for any constant vector ╪, 

ÃÕÒÌ╣╪ ÃÕÒÌ╣╣╪

Express vector ╪in the invariant form with 

contravariantcomponents as ╪ ὥἯ . It follows that  

ÃÕÒÌ╣╪ ‭ Ὕ ȟ ἯṧἯ ╪

‭ Ὕ ȟὥ ἯṧἯ Ἧ

‭ Ὕ ȟὥἯ‏

‭ Ὕ ȟἯὥ

‭ Ὕ ὥ ȟἯ

The last equality resulting from the fact that vector ╪is 
a constant vector. Clearly,

ÃÕÒÌ╣╪ ÃÕÒÌ╣╪
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For any two vectors Ἵand Ἶ, show that ÃÕÒÌἽṧἾ
ÇÒÁÄἽἾ ╣ ÃÕÒÌἾṧ◊where Ἶ is the skew 

tensor ‭ ὺἯ░ṧἯ▒.

Recall that the curl of a tensor ╣isdefined by ÃÕÒÌ╣ḳ

‭ Ὕ ȟἯṧἯ . Clearly therefore, 

ÃÕÒÌ◊ṧ○ ‭ όὺ ȟἯṧἯ

‭ όȟὺ όὺȟ ἯṧἯ

‭ όȟὺἯṧἯ ‭ όὺȟἯṧἯ

‭ ὺἯ ṧ όȟἯ ‭ ὺȟἯ ṧ όἯ

‭ ὺἯṧἯ όȟἯ ṧἯ ‭ ὺȟἯ

ṧ όἯ ○ ÇÒÁÄ◊╣ ÃÕÒÌ○ṧ◊
ÇÒÁÄ◊○ ╣ ÃÕÒÌ○ṧ◊

upon noting that the vector cross is a skew tensor.
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Show that ÃÕÒÌ◊ ○ ÄÉÖ◊ṧ○ ○ṧ◊

The vector◌ḳ◊ ○ ύ▓Ἧ
▓ ‭ όὺἯ▓and

ÃÕÒÌ◌ ‭ ύȟἯ. Therefore, 

ÃÕÒÌ◊ ○ ‭ ύȟἯ

‭ ‭ όὺ ȟἯ

‏‏ ‏‏ όὺ ȟἯ

‏‏ ‏‏ όȟὺ

όȟὺ όὺȟ όȟὺ

όὺ ȟ όὺ ȟἯ

ÄÉÖ◊ṧ○ ○ṧ◊

since ÄÉÖ◊ṧ○ όὺ ȟἯṧἯẗἯ όὺ ȟἯ.
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Given a scalar point function ‰and a second-order tensor field╣, 

show that ἫἽἺἴ‰╣ ‰ἫἽἺἴ╣ ÇÒÁÄ‰ ╣╣where 

ÇÒÁÄ‰ is the skew tensor ‭ ‰ȟἯ░ṧἯ▓
ÃÕÒÌ‰╣ ḳ‭ ‰Ὕ ȟἯṧἯ

‭ ‰ȟὝ ‰Ὕȟ ἯṧἯ

‭ ‰ȟὝ ἯṧἯ ‰‭ Ὕ ȟἯṧἯ

‭ ‰ȟἯṧἯ Ὕ Ἧ ṧἯ ‰‭ Ὕ ȟἯ

‰ÃÕÒÌ╣ ÇÒÁÄ‰ ╣
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For a second-order tensor field ╣, show that 

ÄÉÖÃÕÒÌ╣ ÃÕÒÌÄÉÖ╣ἢ

Define the second order tensor Ὓas 

ÃÕÒÌ╣ḳ‭ Ὕ ȟἯṧἯ ὛȢἯṧἯ

The gradient of ╢is ὛȢȟἯṧἯ ṧἯ

‭ Ὕ ȟ ἯṧἯ ṧἯ

Clearly, 

ÄÉÖÃÕÒÌ╣ ‭ Ὕ ȟ ἯṧἯ ẗἯ

‭ Ὕ ȟ ἯὫ

‭ Ὕ ȟ Ἧ ÃÕÒÌÄÉÖ╣
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If the volume ╥is enclosed by the surface ╢, the position vector 
► ●░Ἧ░and ▪is the external unit normal to each surface 

element, show that 
╢᷿
►ẗ►ẗ▪▀╢equals the volume 

contained in ╥.

►ẗ► ὼὼἯẗἯ ὼὼὫ

By the Divergence Theorem, 

​►ẗ►ẗ▪ὨὛ ​ẗ​►ẗ► Ὠὠ

‬‬ ὼὼὫ ἯẗἯ Ὠὠ

‬Ὣ ὼȟὼ ὼὼȟ ἯẗἯ Ὠὠ

ὫὫ ὼ‏ ὼ‏ ȟὨὠ ςὫ Ὣ ὼȟὨὠ ς‏‏Ὠὠ

φ Ὠὠ
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For any Euclidean coordinate system, show that ÄÉÖἽ Ἶ
ἾÃÕÒÌἽ ἽÃÕÒÌἾ

Given the contravariant vector όand ὺwith their associated 
vectors όand ὺ, the contravariant component of the above cross 
product is ‭ όὺ .The required divergence is simply the 
contraction of the covariant ὼderivative of this quantity:

‭ όὺ
ȟ
‭ όȟὺ ‭ όὺȟ

where we have treated the tensor ‭ as a constant under the 
covariant derivative. 

Cyclically rearranging the RHS we obtain,

‭ όὺ
ȟ
ὺ‭ όȟ ό‭ ὺȟ ὺ‭ όȟ ό‭ ὺȟ

where we have used the anti-symmetric property of the tensor 
‭ . The last expression shows clearly that

ÄÉÖἽ Ἶ ἾÃÕÒÌἽ ἽÃÕÒÌἾ

as required.
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For a scalar variable ‌, if the tensor ἢ ἢ‌ and ἢḳ
ἢ
, Show that ÄÅÔἢ

ÄÅÔἢÔÒἢἢ
Proof:

Let Ἃḳἢἢ so that, ἢ Ἃἢ. In component form, we haveὝ ὃ Ὕ . 
Therefore, 

Ὠ

Ὠ‌
ÄÅÔἢ

Ὠ

Ὠ‌
‭ ὝὝὝ ‭ ὝὝὝ ὝὝὝ ὝὝὝ

‭ ὃὝὝὝ Ὕὃ Ὕ Ὕ ὝὝὃὝ

‭ ὃὝ ὃὝ ὃὝ ὝὝ

*
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(For example, the first boxed term yields, ‭ ὃὝὝὝ

Which is symmetric as well as antisymmetricin Ὥand Ὦ. It 

therefore vanishes. The same is true for all other such terms.)

Ὠ

Ὠ‌
ÄÅÔἢ ‭ ὃὝ ὝὝ Ὕ ὃὝ Ὕ ὝὝ ὃὝ

ὃ ‭ ὝὝὝ

ÔÒἢἢ ÄÅÔἢ

as required.
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For a general tensor field ╣show that, ἫἽἺἴἫἽἺἴ╣ ἼἺ╣
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When ╣is symmetric, show that tr ÃÕÒÌ╣ vanishes.

ÃÕÒÌ╣ ꜗ Ὕ ȟἯṧἯ

ÔÒÃÕÒÌ╣ ‭ Ὕ ȟἯẗἯ

‭ Ὕ ȟ‏ ‭ Ὕȟ

which obviously vanishes on account of the symmetry 
and antisymmetry in Ὥand Ὧ. In this case, 

ÃÕÒÌÃÕÒÌ╣

​ ÔÒ╣ ÄÉÖÄÉÖ╣ ╘ ÇÒÁÄÇÒÁÄÔÒ╣

ςÇÒÁÄÄÉÖ╣ ​╣

as ÇÒÁÄÄÉÖ╣ ÇÒÁÄÄÉÖ╣ if the order of 

differentiation is immaterial and T is symmetric.
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For a scalar function ɮand a vector ὺshow that the 
divergence of the vector ὺɮis equal to, ἾẗÇÒÁÄɮ
ɮÄÉÖἾ

ὺɮ
ȟ
ɮὺȟ ὺɮȟ

Hence the result.
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Show that ╬◊►■Ἵ Ἶ Ἶɇ Ἵ ἽẗÄÉÖἾ ἾẗÄÉÖἽ
Ἵɇ Ἶ

Taking the associated (covariant) vector of the expression for 
the cross product in the last example, it is straightforward to 
see that the LHS in indicial notation is, 

‭ ‭ όὺ
ȟ

Expanding in the usual way, noting the relation between the 
alternating tensors and the Kroneckerdeltas,

‭ ‭ όὺ
ȟ

‏ όȟὺ όὺȟ

‏ όȟὺ όὺȟ
‏ ‏

‏ ‏
όȟὺ όὺȟ

‏‏ ‏‏ όȟὺ όὺȟ
‏‏ όȟὺ ‏‏ όὺȟ ‏‏ όȟὺ

‏‏ όὺȟ
όȟὺ ό ȟὺ όὺ ȟ ό ὺȟ

Which is the result we seek in indicial notation.
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*Here are the names of your tormentors:

*Kronecker, Einstein, Gateaux, Frechét, Christoffel, Ricci, Riemann

Gateaux gave us a powerful way to express the change, or differential 
of any function of any order in a linear fashion no matter the 
functional relationship constituting the function.

ὈὊἾȟἬἾḳÌÉÍ
ᴼ

ὊἾ ‌Ἶ ὊἾ

‌
ḳ
Ὠ

Ὠ‌
ὊἾ ‌ὨἾ

ᴼ

This is the Gateaux Differential. We showed this as a powerful super 
differential as your old concept of differential is contained in it and 
can be considered a special case of Gateaux
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Executive Summary



*And, what did he say?

*He defines a kind of derivative with respect to the 
variable whether that variable itself is a scalar, vector 
or a tensor. Given the Gateaux differential, we write

ὈὊἾȟÄἾḳ
‬ὊἾ

‬Ἶ
ÄἾ

As the defining equation for the Frechétderivative. The 
exact kind of product we have on the RHS as well as the 
kind of quantity in the product is to be found.
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Here comes Mr Frechét!



1. Ὂis a scalar function of a vector variable.

Here, the Gateaux differential is obviously a scalar and the 

product is certainly a scalar product so that 
Ἶ

is necessarily a 

vector quantity. If we express Ἶ ὺἯ the result of all earlier 
proofs is simply that,

‬Ὂ

‬Ἶ

‬Ὂ

‬ὺ
Ἧ

With the covariance of the index arising from the quotient 
occurrence of a vector. This is the real definition of Grad or 
Frechetderivative for a scalar function of a vector.
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Three Cases for Vector Variables



The Gateaux here is certainly a vector quantity! You now 

have that 
ἐἾ

Ἶ
is operating on the vector ÄἾto produce 

a vector! We conclude that 
ἐἾ

Ἶ
is nothing but a second-

order tensor! This Frechétderivative, or the gradient of 
a vector was what your teachers all along could never 

tell you about! If ἐ ὊἯ and as before, we write Ἶ

ὺἯ, then we can say that,

‬ἐ

‬Ἶ

‬Ὂ

‬ὺ
ἯṧἯ
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2. Ὂis a vector function 



*You have already seen that the gradient increases the 
order of any function by adding an extra basis at the 
end. We can simply go on without any further and 
simply say that for a tensor function of a vector, we 
have

‬ἢ

‬Ἶ

‬Ὕ

‬ὺ
ἯṧἯṧἯ
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3. Gradient of a Tensor Function



Given a vector point function ◊ὼȟὼȟὼ and its covariant 
components, ό ὼȟὼȟὼ ȟ‌ ρȟςȟσȟ×ÉÔÈἯas thereciprocal 
basis vectors, then

◊ όἯȟÓÏÔÈÁÔὨ◊
‬

‬ὼ
όἯ Ὠὼ

‬ό

‬ὼ
Ἧ

‬Ἧ

‬ὼ
ό Ὠὼ

Clearly, 
‬◊

‬ὼ

‬ό

‬ὼ
Ἧ

‬Ἧ

‬ὼ
ό

And the projection of this quantity on theἯdirection is,
‬◊

‬ὼ
ɇἯ

‬ό

‬ὼ
Ἧ

‬Ἧ

‬ὼ
ό ɇἯ

‬ό

‬ὼ
Ἧ ɇἯ

‬Ἧ

‬ὼ
ɇἯό

‬ό

‬ὼ
‏

‬Ἧ

‬ὼ
ɇἯό

Differentiation of Fields
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*.Ï×ȟἯɇἯ ÓÏÔÈÁÔ‏

‬Ἧ

‬ὼ
ɇἯ Ἧɇ

‬Ἧ

‬ὼ
πȢ

‬Ἧ

‬ὼ
ɇἯ Ἧɇ

‬Ἧ

‬ὼ
ḳ

Ὥ
ὮὯ
Ȣ

This important quantity, necessary to quantify the 
derivative of a tensor in general coordinates, is called 
the Christoffel Symbol of the second kind. 

ChristoffelSymbols
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Using this, we can now write that,
‬◊

‬ὼ
ɇἯ

‬ό

‬ὼ
‏

‬Ἧ

‬ὼ
ɇἯό

‬ό

‬ὼ

‌
ὭὯ
ό

* The quantity on the RHS is the component of the derivative of vector ◊
along the Ἧdirection using covariant components. It is the covariant 
derivative of ◊. Using contravariantcomponents, we could write,

Ὠ◊
‬ό

‬ὼ
Ἧ

‬Ἧ

‬ὼ
ό Ὠὼ

‬ό

‬ὼ
Ἧ

‌
ὭὯ
Ἧό Ὠὼ

* So that, 
‬◊

‬ὼ

‬ό

‬ὼ
Ἧ

‬Ἧ

‬ὼ
ό

* The components of this in the direction of Ἧcan be obtained by taking a 
dot product as before:

‬◊

‬ὼ
ɇἯ

‬ό

‬ὼ
Ἧ

‬Ἧ

‬ὼ
ό ɇἯ

‬ό

‬ὼ
‏

‬Ἧ

‬ὼ
ɇἯό

‬ό

‬ὼ
Ὥ
‌Ὧ
ό

Derivatives in General Coordinates
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The two results above are represented symbolically as,

όȟ
‬ό

‬ὼ

‌
ὭὯ
όÁÎÄόȟ

‬ό

‬ὼ
Ὥ
‌Ὧ
ό

*Which are the components of the covariant derivatives in 
terms of the covariant and contravariantcomponents 
respectively.

*It now becomes useful to establish the fact that our 
definition of the Christoffel symbols here conforms to the 
definition you find in the books using the transformation 
rules to define the tensor quantities.

Covariant Derivatives

oafak@unilag.edu.ng  12/27/2012Dept of Systems Engineering, University of Lagos 81



Assume we do not know the components of a given vector ╕and we 
want to find it. First consider the base vectors, ἯȟἯÁÎÄἯ or Ἧ, Ὥ
ρȟȣȟσȢLet us write,

╕ ‌Ἧ ‍Ἧ ‎Ἧ

So that we  now try to find what these components are. Recall the 
standard procedure is to take an inner product of the equation with a 
dual base vector:

╕ẗἯ ‌ἯẗἯ ‍ἯẗἯ ‎ἯẗἯ

From which we can immediately see that, 
‌ ╕ẗἯ ḳὊ

A similar argument shows that ‍ ╕ẗἯ ḳὊ and ‎ ╕ẗἯ ḳὊ

This enables us to write, ╕ ‌Ἧ ‍Ἧ ‎Ἧ ὊἯ. You can now see 
that the dotting by Ἧgave us the coefficients along Ἧcontrary to what 
I had claimed in the notes! I am sorry for the misleading information!
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Error Discussion



*We observe that the derivative of the covariant basis, Ἧ
Ἲ
ȟ

‬Ἧ

‬ὼ

‬Ἲ

‬ὼ‬ὼ

‬Ἲ

‬ὼ‬ὼ

‬Ἧ

‬ὼ
*Taking the dot product with Ἧ,
‬Ἧ

‬ὼ
ɇἯ

ρ

ς

‬Ἧ

‬ὼ
ɇἯ

‬Ἧ

‬ὼ
ɇἯ

ρ

ς

‬

‬ὼ
ἯɇἯ

‬

‬ὼ
ἯɇἯ Ἧɇ

‬Ἧ

‬ὼ
Ἧɇ
‬Ἧ

‬ὼ

ρ

ς

‬

‬ὼ
ἯɇἯ

‬

‬ὼ
ἯɇἯ Ἧɇ

‬Ἧ

‬ὼ
Ἧɇ
‬Ἧ

‬ὼ

ρ

ς

‬

‬ὼ
ἯɇἯ

‬

‬ὼ
ἯɇἯ

‬

‬ὼ
ἯɇἯ

ρ

ς

‬Ὣ

‬ὼ

‬Ὣ

‬ὼ

‬Ὣ

‬ὼ

ChristoffelSymbols
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*Which is the quantity defined as the Christoffel
symbols of the first kindin the textbooks. It is 
therefore possible for us to write,

ὭὮȟὯḳ
‬Ἧ

‬ὼ
ɇἯ

‬Ἧ

‬ὼ
ɇἯ

ρ

ς

‬Ὣ

‬ὼ

‬Ὣ

‬ὼ

‬Ὣ

‬ὼ

It should be emphasized that the Christoffel symbols, 
even though the play a critical role in several tensor 
relationships, are themselves NOT tensor quantities. 
(Prove this). However, notice their symmetry in the 
Ὥand Ὦ. The extension of this definition to the 
Christoffel symbols of the second kind is immediate:

The First Kind
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*Contract the above equation with the conjugate metric 
tensor, we have,

Ὣ ὭὮȟ‌ḳὫ
‬Ἧ

‬ὼ
ɇἯ Ὣ

‬Ἧ

‬ὼ
ɇἯ

‬Ἧ

‬ὼ
ɇἯ

Ὧ
ὭὮ

‬Ἧ

‬ὼ
ɇἯ

Which connects the common definition of the second 
Christoffel symbol with the one defined in the above 
derivation. The relationship,

Ὣ ὭὮȟ‌
Ὧ
ὭὮ

apart from defining the relationship between the Christoffel
symbols of the first kind and that second kind, also 
highlights, once more, the index-raising property of the 
conjugate metric tensor. 

The Second Kind
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We contract the above equation with Ὣ and obtain,

Ὣ Ὣ ὭὮȟ‌ Ὣ
Ὧ
ὭὮ

‏ ὭὮȟ‌ ὭὮȟ‍ Ὣ
Ὧ
ὭὮ

so that,

Ὣ
‌
ὭὮ ὭὮȟὯ

Showing that the metric tensor can be used to lower 
the contravariant index of the Christoffel symbol of the 
second kind to obtain the Christoffel symbol of the first 
kind.

Two ChristoffelSymbols Related
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We are now in a position to express the derivatives of 
higher order tensor fields in terms of the Christoffel
symbols. 

For a second-order tensor ἢ, we can express the 
components in dyadic form along the product basis as 
follows:

ἢ ὝἯṧἯ Ὕ ἯἆἯ ὝȢἯṧἯ ὝȢἯἆἯ

This is perfectly analogous to our expanding vectors in 
terms of basis and reciprocal bases. Derivatives of the 
tensor may therefore be expressible in any of these 
product bases. As an example, take the product 
covariant bases. 

Higher Order Tensors
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We have:

‬ἢ

‬ὼ

‬Ὕ

‬ὼ
ἯἆἯ Ὕ

‬Ἧ

‬ὼ
ἆἯ Ὕ Ἧἆ

‬Ἧ

‬ὼ

Recall that, 
Ἧ
ɇἯ

Ὦ
ὭὯ

. It follows therefore that,

‬Ἧ

‬ὼ
ɇἯ

‌
ὭὯ
‏

‬Ἧ

‬ὼ
ɇἯ

‌
ὭὯ
Ἧ ɇἯ

‬Ἧ

‬ὼ

‌
ὭὯ
Ἧ ɇἯ πȢ

Clearly,
Ἧ ‌

ὭὯ
Ἧ

(Obviously sinceἯÉÓÁÂÁÓÉÓÖÅÃÔÏÒÉÔÃÁÎÎÏÔÖÁÎÉÓÈ) 

Higher Order Tensors
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‬ἢ

‬ὼ

‬Ὕ

‬ὼ
ἯἆἯ Ὕ

‬Ἧ

‬ὼ
ἆἯ Ὕ Ἧἆ

‬Ἧ

‬ὼ
‬Ὕ

‬ὼ
ἯἆἯ Ὕ

‌
ὭὯ
Ἧ ἆἯ Ὕ Ἧἆ

‌
ὮὯἯ

‬Ὕ

‬ὼ
ἯἆἯ Ὕ

Ὥ
‌Ὧ
Ἧ ἆἯ Ὕ Ἧἆ

Ὦ
‌Ὧ
Ἧ

‬Ὕ

‬ὼ
Ὕ

Ὥ
‌Ὧ

Ὕ
Ὦ
‌Ὧ

ἯἆἯ ὝȟἯἆἯ

Where 

Ὕ
ȟ

‬Ὕ

‬ὼ
Ὕ

Ὥ
‌Ὧ

Ὕ
Ὦ
‌Ὧ
ÏÒ
‬Ὕ

‬ὼ
Ὕ ɜ Ὕ ɜ

are the components of the covariant derivative of the tensor ἢin terms 
of contravariantcomponents on the product covariant bases as shown. 

Higher Order Tensors
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In the same way, by taking the tensor expression in the dyadic form of its 
contravariantproduct bases, we can write,

‬ἢ

‬ὼ

‬Ὕ

‬ὼ
ἯṧἯ Ὕ

‬Ἧ

‬ὼ
ṧἯ ὝἯṧ

‬Ἧ

‬ὼ
‬Ὕ

‬ὼ
ἯṧἯ Ὕɜ ṧἯ ὝἯṧ

‬Ἧ

‬ὼ

Again, notice from previous derivation above, 
Ὥ
ὮὯ

Ἧ
ɇἯ so that, 

Ἧ

Ὥ
‌Ὧ
Ἧ ɜ Ἧ Therefore,

‬ἢ

‬ὼ

‬Ὕ

‬ὼ
ἯṧἯ Ὕ

‬Ἧ

‬ὼ
ṧἯ ὝἯṧ

‬Ἧ

‬ὼ
‬Ὕ

‬ὼ
ἯṧἯ Ὕɜ Ἧ ṧἯ ὝἯṧɜ Ἧ

‬Ὕ

‬ὼ
Ὕ ɜ Ὕɜ ἯṧἯ ὝȟἯṧἯ

So that

Ὕȟ
‬Ὕ

‬ὼ
Ὕ ɜ Ὕɜ

Higher Order Tensors
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Two other expressions can be found for the covariant 
derivative components in terms of the mixed tensor 
components using the mixed product bases defined 
above. It is a good exercise to derive these. 

The formula for covariant differentiation of higher order 
tensors follow the same kind of logic as the above 
definitions. Each covariant index will produce an 
additional term similar to that in 3 with a dummy index 
supplanting the appropriate covariant index. In the 
same way, each contravariant index produces an 
additional term like that in 3 with a dummy index 
supplanting an appropriate contravariant index. 

Higher Order Tensors
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*The covariant derivative of the mixed tensor, ὃ ȟ ȟȣȟ
ȟ ȟȣȟ

is the 

most general case for the covariant derivative of an absolute 
tensor:
ὃ ȟ ȟȣȟ

ȟ ȟȣȟ

ȟ

‬ὃ ȟ ȟȣȟ
ȟ ȟȣȟ

‬ὼ

‌
ὭὮὃ ȟ ȟȣȟ

ȟ ȟȣȟ ‌
ὭὮὃ ȟȟȣȟ

ȟ ȟȣȟ
Ễ

‌
ὭὮὃ ȟ ȟȣȟ

ȟ ȟȣȟ

Ὦ
‍Ὦ
ὃ ȟ ȟȣȟ
ȟ ȟȣȟ Ὦ

‍Ὦ
ὃ ȟ ȟȣȟ

ȟȟȣȟ
Ễ

Higher Order Mixed Tensors
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The metric tensor components behave like constants under a 
covariant differentiation. The proof that this is so is due to 
Ricci:

Ὣȟ
‬Ὣ

‬ὼ

‌
ὭὯ
Ὣ

‍
ὯὮ
Ὣ

‬Ὣ

‬ὼ
ὭὯȟὮ ὯὮȟὭ

‬Ὣ

‬ὼ

ρ

ς

‬Ὣ

‬ὼ

‬Ὣ

‬ὼ

‬Ὣ

‬ὼ

ρ

ς

‬Ὣ

‬ὼ

‬Ὣ

‬ὼ

πȢ

2ÉÃÃÉȭÓ Theorem
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The conjugate metric tensor behaves the same way as can be 
seen from the relationship,

ὫὫ ‏
The above can be differentiated covariantlywith respect to 
ὼ to obtain

ὫȟὫ ὫὫȟ ȟ‏

π ὫὫȟ
‏‬

‬ὼ

‌
ὭὯ
‏

Ὦ
‌Ὧ
‏

ὫὫȟ π
Ὦ
ὭὯ

Ὦ
ὭὯ

π

The contraction of Ὣ with Ὣ ȟvanishes. Since we know 
that the metric tensor cannot vanish in general, we can only 
conclude that 

Ὣ ȟ π

2ÉÃÃÉȭÓ Theorem
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*Which is the second part of the Ricci theorem. With 
these two, we can treat the metric tensor as well as 
its conjugate as constants in covariant differentiation. 
Notice that along with this proof, we also obtained 
the result that the KroneckerDelta vanishes under a 
partial derivative (an obvious fact since it is a 
constant), as well as under the covariant derivative. 
We summarize these results as follows: 

*The metric tensors Ὣ and Ὣ as well as the alternating 
tensors ‭ ȟ‭ are all constants under a covariant 

differention. The Kroneckerdelta ‏ is a constant under 
both covariant as well as the regular partial 
differentiation
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The divergence theorem is central to several other results in 
Continuum Mechanics. We present here a generalized form 
[Ogden] which states that, 

Gauss Divergence Theorem

For a tensor field , The volume integral in the region ɱṒ ȟ꜡

ÇÒÁÄὨὺ ṧἶὨί

where ἶis the outward drawn normal to‬ɱɀthe boundary 
of ɱȢ

Integral Theorems
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Vector field. Replacing the tensor with the vector field Ἦ
and contracting, we have,

ÄÉÖἮὨὺ ἮẗἶὨί

Which is the usual form of the Gauss theorem.

Special Cases: Vector Field
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For a scalar field ‰, the divergence becomes a gradient 
and the scalar product on the RHS becomes a simple 
multiplication. Hence the divergence theorem becomes,

ÇÒÁÄ‰Ὠὺ ‰ἶὨί

The procedure here is valid and will become obvious if 
we write, Ἦ ‰╪where ╪is an arbitrary constant
vector. 

Scalar Field
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ÄÉÖ‰╪ Ὠὺ ‰╪ẗἶὨί ╪ẗ ‰ἶὨί

For the LHS, note that, ÄÉÖ‰╪ ÔÒÇÒÁÄ‰╪

ÇÒÁÄ‰╪ ‰ὥ ȟἯṧἯ

ὥ‰ȟἯṧἯ

The trace of which is,

ὥ‰ȟἯẗἯ ὥ‰ȟ‏

ὥ‰ȟ ╪ẗÇÒÁÄ‰

For the arbitrary constant vector ╪ȟwe therefore have that,

ÄÉÖ‰╪ Ὠὺ ╪ẗ ÇÒÁÄ‰Ὠὺ ╪ẗ ‰ἶὨί

ÇÒÁÄ‰Ὠὺ ‰ἶὨί
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For a second-order tensor ἢ, the Gauss Theorem 
becomes,

ÄÉÖἢὨὺ ἢἶὨί

The original outer product under the integral can be 
expressed in dyadic form:

ÇÒÁÄἢὨὺ Ὕ ȟἯṧἯṧἯὨὺ

ἢṧἶὨί

Ὕ ἯṧἯṧ ὲἯ Ὠί

Second-Order Tensor field
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Or

Ὕ ȟἯṧἯṧἯὨὺ Ὕ ὲἯṧἯṧἯὨί

Contracting, we have

Ὕ ȟ ἯṧἯ ἯὨὺ Ὕ ὲ ἯṧἯ ἯὨί

Ὕ ȟ‏ἯὨὺ Ὕ ὲ‏ἯὨί

Ὕ ȟἯὨὺ Ὕ ὲἯὨί

Which is the same as,

ÄÉÖἢὨὺ ἢἶὨί

Second-Order Tensor field
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Consider the Euclidean Point Space .꜡ A curve ꜟ is defined by 
the parametrization(Gurtin):

ὀ ὀ‗where ‗ ‗ɴ ד ‗

iꜟs said to be a closed curve if 
ὀ‗ ὀ‗

Define Ἴ‗ḳ
ὀ

.

For any vector point function defined everywhere along ꜟ, 
the line integral,

ꜟ

Ἶẗ▀ὀ Ἶὀ‗ ẗ
Ὠὀ‗

Ὠ‗
Ὠ‗ Ἶὀ‗ ẗἼ‗Ὠ‗
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Stokes Theorem
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Stokes Theorem

Let ‰be a scalar field on ꜡, the 

Chain rule immediately implies 

that, 

ÇÒÁÄ‰ẗ▀ὀ ÇÒÁÄ‰ẗ
Ὠὀ‗

Ὠ‗
Ὠ‗

‬‰ὀ‗

‬‗
Ὠ‗ ‰ὀ‗ ‰ὀ‗

So that for a close curve ꜟ᷿ ÇÒÁÄ‰ẗ▀ὀ π

For a positively oriented surface bounded by a closed curve ꜟ

(Gurtin), Stokes theorem is stated as follows:
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Stokes Theorem

3ÔÏËÅÓȭ 4ÈÅÏÒÅÍ ,ÅÔ ‰, Ἶ, and ἢbe scalar, vector, and tensor 
fields with common domain a region ד. Then given any 
positively oriented surface ה, with boundary ꜟ closed curve, 
in ד

ꜟ

‰Ὠὀ
ה

ἶ ÇÒÁÄ‰Ὠὥ

ꜟ

ἾẗὨὀ
ה

ἶ ÃÕÒÌἾὨὥ

ꜟ

ἢὨὀ
ה

ÃÕÒÌἢ Ὠὥ



*The components of a vector or tensor in a Cartesian 
system are projections of the vector on directions 
that have no dimensions and a value of unity. 

*These components therefore have the same units as 
the vectors themselves. 

*It is natural therefore to expect that the components 
of a tensor have the same dimensions. 

*In general, this is not so. In curvilinear coordinates, 
components of tensors do not necessarily have a 
direct physical meaning. This comes from the fact 
that base vectors are not guaranteed to have unit 
values (Ὤ ρin general). 

Physical Components of Tensors
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*They may not be dimensionless. For example, in 
orthogonal spherical polar, the base vectors are 
ἯȟἯÁÎÄἯ. 

*These can be expressed in terms of dimensionless 
unit vectors as, ”Ἥȟ”ÓÉÎ‰ἭȟÁÎÄἭ since the 

magnitudes of the basis vectors are ”ȟ”ÓÉÎ‰ȟÁÎÄρ

or Ὣ ȟὫ ȟὫ respectively. 

*As an example consider a force with the contravariant
components ὊȟὊ ÁÎÄὊȟ

ἐ ὊἯ ὊἯ Ὂ Ἧ
”ὊἭ ”ÓÉÎ‰ὊἭ ὊἭ

Physical Components
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*Which may also be expressed in terms of physical 
components,

ἐ ὊἭ ὊἭ ὊἭȢ

*While these physical components ὊȟὊȟὊ have the 

dimensions of force, for the contravariant
components normalized by the in terms of the unit 
vectors along these axes to be consistent, 
”Ὂȟ”ÓÉÎ—ὊȟὊ must each be in the units of a 

force. Hence, ὊȟὊ ÁÎÄὊ may not themselves be in 
force units. The consistency requirement implies,
Ὂ ”Ὂȟ Ὂ ”ÓÉÎ—Ὂȟ ÁÎÄὊ Ὂ

Physical Components
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*For the same reasons, if we had used covariant 
components, the relationships,

Ὂ
Ὂ

”
ȟ Ὂ

Ὂ

”ÓÉÎ—
ȟ ÁÎÄὊ Ὂ

*The magnitudes of the reciprocal base vectors are 

ȟ ȟÁÎÄρ. While the physical components have the 

dimensions of force, Ὂ ”Ὂand Ὂ ”ÓÉÎ‰Ὂ have the 

dimensions of moment, while Ὂ and Ὂ are 

in dimensions of force per unit length.  Only the third 
components in both cases are given in the dimensions of 
force. 

Physical Components
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*The physical components of a vector or tensor are 
components that have physically meaningful units and 
magnitudes. Often it is convenient to derive the governing 
equations for a problem in terms of the tensor components 
but to solve the problem in physical components.

*In an orthogonal system of coordinates, to obtain a physical 
component from a tensor component we must divide by the 
magnitude of the relevant coordinate for each covariant 
index and multiply by each contravariant index. To illustrate 
this point, consider the evaluation of the physical 

components of the symmetric tensor components † or †or 

† in spherical polar coordinates. Here, as we have seen, the 

magnitudes of the base vectors  Ὣ ȟὫ ȟὫ or ὬȟὬ
and Ὤ are ”ȟ”ÓÉÎ‰ÁÎÄρ. Using the rule specified above, 
the table below computes the physical components from the 
three associated tensors as follows:
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Physical

Component

Contravariant Covariant Mixed

Ⱳⱬⱬ † ὬὬ † ” †

ὬὬ

†

”
†

Ὤ
Ὤ †

ⱲⱬⱣ † ὬὬ † ”ÓÉÎ‰ †

ὬὬ

†

”ÓÉÎ‰
†

Ὤ
Ὤ

†

ÓÉÎ‰

ⱲⱣⱣ † ὬὬ † ”ÓÉÎ‰ †

ὬὬ

†

”ÓÉÎ‰
†

Ὤ
Ὤ †

ⱲⱣꜚ † ὬὬ † ”ÓÉÎ‰ †

ὬὬ

†

”ÓÉÎ‰
†

Ὤ
Ὤ †”ÓÉÎ‰

Ⱳꜚꜚ † ὬὬ † †

ὬὬ
† †

Ὤ
Ὤ †

Ⱳⱬꜚ † ὬὬ † ” †

ὬὬ

†

”
†

Ὤ
Ὤ

†

”
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17. The transformation equations from the Cartesian to the oblate spheroidal 
coordinates Ⱪ, Ɫand ⱴare: ● █ⱩⱢἻἱἶⱴ, ◐ █ Ⱪ Ɫ , and ◑ █ⱩⱢἫἷἻⱴ, 
where f is a constant representing the half the distance between the foci of a family of 
confocal ellipses. Find the components of the metric tensor in this system.
The metric tensor components are:

Ὣ
‬ὼ

‬‚

‬ώ

‬‚

‬ᾀ

‬‚

Ὢ–ÓÉÎ• Ὢ‚
ρ –

‚ ρ
Ὢ–ÃÏÓ• Ὢ

‚ –

‚ ρ

Ὣ
‬ὼ

‬–

‬ώ

‬–

‬ᾀ

‬–
Ὢ
‚ –

ρ ‚

Ὣ
‬ὼ

‬•

‬ώ

‬•

‬ᾀ

‬•
Ὢ‚–

Ὣ
‬ὼ

‬‚

‬ὼ

‬–

‬ώ

‬‚

‬ώ

‬–

‬ᾀ

‬‚

‬ᾀ

‬–

Ὢ–ÓÉÎ• Ὢ‚ÓÉÎ• Ὢ–
‚ ρ

ρ –
Ὢ‚
ρ –

‚ ρ
Ὢ–ÃÏÓ• Ὢ‚ÃÏÓ•

π Ὣ Ὣ
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Find an expression for the divergence of a vector in orthogonal 
curvilinear coordinates.

The gradient of a vector ╕ ὊἯ is ​ṧ╕ Ἧ‬ṧ ὊἯ ὊȟἯṧἯ. The 

divergence is the contraction of the gradient. While we may use this to evaluate the 
divergence directly it is often easier to use the computation formula in equation Ex 15:

​ẗἐ ὊȟἯẗἯ Ὂȟ
ρ

Ὣ

‬ ὫὊ

‬ὼ
ρ

ὬὬὬ

‬

‬ὼ
ὬὬὬὊ

‬

‬ὼ
ὬὬὬὊ

‬

‬ὼ
ὬὬὬὊ

Recall that the physical (components having the same units as the tensor in question) 
components of a contravariant tensor are not equal to the tensor components unless 

the coordinate system is Cartesian. The physical component ὊὭ ὊὬ(no sum on i). 
In terms of the physical components therefore, the divergence becomes,

ρ

ὬὬὬ

‬

‬ὼ
ὬὬὊρ

‬

‬ὼ
ὬὬὊς

‬

‬ὼ
ὬὬὊσ
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Find an expression for the Laplacianoperator in Orthogonal coordinates.
For the contravariantcomponent of a vector, Ὂ, 

Ὂȟ
ρ

Ὣ

‬ ὫὊ

‬ὼ
Ȣ

Now the contravariantcomponent of gradient Ὂ Ὣ•ȟ. Using this in place 
of the vector Ὂ, we can write,

Ὣ•ȟ
ρ

Ὣ

‬ ὫὫ•ȟ

‬ὼ

given scalar •, the Laplacian​•is defined as, Ὣ•ȟ so that,

​• Ὣ•ȟ
ρ

Ὣ

‬

‬ὼ
ὫὫ

‬•

‬ὼ

When coordinates are orthogonal, Ὣ Ὣ πwhenever Ὥ Ὦ. Expanding 
the computation formula therefore, we can write,

​•
ρ

ὬὬὬ

‬

‬ὼ

ὬὬὬ

Ὤ

‬•

‬ὼ

‬

‬ὼ

ὬὬὬ

Ὤ

‬•

‬ὼ

‬

‬ὼ

ὬὬὬ

Ὤ

‬•

‬ὼ

ρ

ὬὬὬ

‬

‬ὼ
ὬὬ

‬•

‬ὼ

‬

‬ὼ
ὬὬ

‬•

‬ὼ

‬

‬ὼ
ὬὬ

‬•

‬ὼ
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Show that the oblate spheroidal coordinate systems are 
orthogonal. Find an expression for the Laplacianof a scalar 
function in this system.

Example above shows that Ὣ Ὣ Ὣ π. This is the 

required proof of orthogonality. Using the computation 
formula in example 11, we may write for the oblate spheroidal 
coordinates that,
​ɮ

‚ ρ ρ –

Ὢ‚ ‚ –

‬

‬‚
Ὢ‚–

‚ ρ

ρ –

‬ɮ

‬‚
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For a vector field ◊, show that ÇÒÁÄ◊ is a third 
ranked tensor. Hence or otherwise show that 
ÄÉÖ◊ ÃÕÒÌ◊.

The secondɀorder tensor ◊ is defined as ‭ όἯṧ
Ἧ . Taking the covariant derivative with an independent 
base, we have

ÇÒÁÄ◊ ‭ όȟἯṧἯ ṧἯ

This gives a third order tensor as we have seen. 
Contracting on the last two bases, 

ÄÉÖ◊ ‭ όȟἯṧἯ ẗἯ
‭ όȟἯ‏
‭ όȟἯ
ÃÕÒÌ◊
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Begin with our familiar Cartesian system of coordinates. 
We can represent the position of a point (position 
vector) with three coordinates ὼȟώȟᾀᶰa such that,

Ἲ ὼ░ ώ▒ ᾀ▓

*That is, the choice of any three scalars can be used to 
locate a point. We now introduce a transformation 
(called a polar transformation) of ὼȟώᴼ ὶȟ‰ such 
that, ὼ ὶÃÏÓ‰ȟand ώ ὶÓÉÎ‰. Note also that this 

transformation is invertible: ὶ ὼ ώ,and ‰

ÔÁÎ

Coordinate transformations
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*With such a transformation, we can locate any point 
in the 3-D space with three scalars ὶȟ‰ȟᾀ instead of 
our previous set ὼȟώȟᾀ. Our position vector is now,

Ἲ ὶÃÏÓ‰░ ὶÓÉÎ‰▒ ᾀ▓ ὶ▄ ᾀ▄

*where we define ▄ḳÃÏÓ‰░ ÓÉÎ‰▒, ▄ is no 
different from ▓. In order to complete our triad of 
basis vectors, we need a third vector, Ὡ. In selecting

▄ , we want it to be such that ▄ȟ▄ȟ▄ can form an 

orthonormal basis.

Curvilinear Coordinates
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Let
▄ ‚░ –▒

*To satisfy our conditions, 

▄ ẗ▄ π, ▄ ẗ▄ π, and ‚ – ρȢ

*It is easy to see that ▄ ḳ ÓÉÎ‰░ ÃÏÓ‰▒satisfies 
these requirements. ▄ȟ▄ȟ▄ forms an 
orthonormal (that is, each member has unit magnitude 
and they are pairwise orthogonal) triad just like 
░ȟ▒ȟ▓. The transformation we have just described 

can be given a geometric interpretation. In either 
case, it is the definition of the Cylindrical Polar 
coordinate system.

Cylindrical Polar coordinate system
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*Unlike our Cartesian system, we note that 

▄ ‰ȟ▄ ‰ȟ▄ as the first two of these are not 

constants but vary with angular orientation. ▄
remains a constant vector as in the Cartesian case.
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*Continuing further with our transformation, we may again 
introduce two new scalars such that ὶȟᾀᴼ ”ȟ— in such a 
way that the position vector,

Ἲ ὶ▄ ᾀ▄ ”ÓÉÎ—▄ ”ÃÏÓ—▄ḳ”▄

*Here, ὶ ”ÓÉÎ—ȟᾀ ”ÃÏÓ—ȢAs before, we can use three 
scalars, ”ȟ—ȟ‰ instead of ὶȟ‰ȟᾀ. In comparison to the 
original Cartesian system we began with, we have that,

Ἲ ὼ░ ώ▒ ᾀ▓ ”ÓÉÎ—▄ ”ÃÏÓ—▄
”ÓÉÎ—ÃÏÓ‰░ ÓÉÎ‰▒ ”ÃÏÓ—▓
”ÓÉÎ—ÃÏÓ‰░ ”ÓÉÎ—ÓÉÎ‰▒ ”ÃÏÓ—▓

ḳ”▄

from which it is clear that the unit vector ▄ ḳ

ÓÉÎ—ÃÏÓ‰░ ÓÉÎ—ÓÉÎ‰▒ ÃÏÓ—▓.

Spherical Polar
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*Again, we introduce the unit vector, ▄ ḳ
ÃÏÓ—ÃÏÓ‰░ ÃÏÓ—ÓÉÎ‰▒ ÓÉÎ—▓and retain ▄

ÓÉÎ‰░ ÃÏÓ‰▒as before. 

*It is easy to demonstrate the fact that these vectors 
constitute another orthonormal set. Combining the two 
transformations, we can move from ὼȟώȟᾀsystem of 
coordinates to ”ȟ—ȟ‰ directly by the transformation 
equations, ὼ ”ÓÉÎ—ÃÏÓ‰, ώ ”ÓÉÎ—ÓÉÎ‰and ᾀ
”ÃÏÓ—. 

*The orthonormal set of basis for the ”ȟ—ȟ‰ system is 

▄ —ȟ‰ȟ▄ —ȟ‰ȟ▄ ‰ . 

*This is the Spherical Polar Coordinate System.

Spherical Polar
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*There two main points to note in transforming from 
Cartesian to Cylindrical or Spherical polar coordinate 
systems. The latter two (also called curvilinear 
systems) have unit basis vector sets that are 
dependent on location. Explicitly, we may write,

▄ ὶȟ‰ȟᾀ ÃÏÓ‰░ ÓÉÎ‰▒
▄ ὶȟ‰ȟᾀ ÓÉÎ‰░ ÃÏÓ‰▒

▄ ὶȟ‰ȟᾀ ▓

Variable Bases
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For Cylindrical Polar, and for Spherical Polar,

*▄ ”ȟ—ȟ‰ ÓÉÎ—ÃÏÓ‰░ ÓÉÎ—ÓÉÎ‰▒ ÃÏÓ—▓

▄ ”ȟ—ȟ‰ ÃÏÓ—ÃÏÓ‰░ ÃÏÓ—ÓÉÎ‰▒ ÓÉÎ—▓
▄ ”ȟ—ȟ‰ ÓÉÎ‰░ ÃÏÓ‰▒Ȣ

*Of course, there are specific cases in which some of 
these basis vectors are constants as we can see. It is 
instructive to note that curvilinear (so called because 
coordinate lines are now curves rather than straight 
lines) coordinates generally have basis vectors that 
depend on the coordinate variables. 

*Unlike the Cartesian system, we will no longer be able 
to assume that the derivatives of the basis vectors 
vanish. 
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*The second point to note is more subtle. While it is 
true that a vector referred to a curvilinear basis will 
have coordinate projections in each of the basis so 
that, a typical vector 

Ἶ ὺἯ ὺἯ ὺἯ

*when referred to the basis vectors {ἯȟἯȟἯ}, for 
position vectors, in order that the transformation 
refers to the same position vector we started with in 
the Cartesian system
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We have for Cylindrical Polar, the vector,
Ἲὶȟ‰ȟᾀ ὶ▄ ‰ ᾀ▄

and for Spherical Polar,
Ἲὶȟ—ȟ‰ ”▄ —ȟ‰

*Expressing position vectors in Curvilinear coordinates must 
be done carefully. We do well to take into consideration 
the fact that in curvilinear systems, the basis vectors are 
not fully specified until they are expressly specified with 
their locational dependencies. 
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*It is only in this situation that we can express the 
position vector of a specific location Spherical and 
Cylindrical Polar coordinates are two more commonly 
used curvilinear systems. Others will be introduced as 
necessary in due course.
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*Beginning from the position vector, given a system 
with coordinate variables ‌ȟ‌ȟ‌ , it is easy to 
prove that the set of vectors,
‬Ἲ‌ȟ‌ȟ‌

‬‌
ȟ
‬Ἲ‌ȟ‌ȟ‌

‬‌
ȟ
‬Ἲ‌ȟ‌ȟ‌

‬‌

Which we can write more compactly as

Ἧḳ
‬Ἲ

‬‌
ȟὭ ρȟςȟσ

constitute an independent set. This set, with its dual set 

of vectors, Ἧ such that ἯẗἯ  constitute the ,‏

Ȱ.ÁÔÕÒÁÌ ÂÁÓÅÓȱ ÆÏÒ ÔÈÅ ÃÏÏÒÄÉÎÁÔÅ ÓÙÓÔÅÍȢ 
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*We can only guarantee the independence of the 
bases for any arbitrary system. They may NOT be 
normalized neither are they guaranteed of mutual 
orthogonality. 

HW. Show that the natural bases for Spherical and 
Cylindrical polar systems are orthogonal but not 
normalized. And that the dual natural bases for the 
Cartesian system coincide.
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Orthonormality of Natural Bases


