
 Until the 17th century the understanding of stress was largely 
intuitive and empirical

 Ancient and medieval architects did develop some geometrical 
methods and simple formulas to compute the proper sizes of pillars 
and beams, but the scientific understanding of stress became 
possible only after the necessary mathematical tools of differential 
and integral calculus were invented in the 17th and 18th centuries:

 The concept of stress as it is understood today can be traced back to 
Cauchy’s work of 1827. 

 He made the notion of stress precise by surmising that a body 
responds to external loading by transmitting forces internally 
throughout the body via a tensor-valued field that is now called the 
Cauchy Stress Tensor.
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A Bit of History



Theory of Stress & Heat Flux
Stress: Scalar, Vector & Tensor

Cauchy Stress Principle, Conjugate Stress Tensors
Fourier-Stokes Heat Flux Theorem



What is “Stress”?

 Stress is a measure of force intensity either within or on 
the bounding surface of a body subjected to loads.

 The Continuum Model takes a macroscopic approach: 

 Measurable aggregate behavior rather than the 
microscopic, atomistic activities that may in fact have led to 
them, and consequently, the

 Standard results of calculus applicable in the case of 
limiting values of this quotient as the areas to which the 
forces are applied become very small.
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Stress



 The simple answer of force per unit area raises the 
following questions:

 What force?

 As the size and shape of the material in question 
changes as motion evolves: What area:

 What direction? Which surface? Which location?

 A more rigorous definition of stress is required to 
settle these and other matters of importance.
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What is Stress?



In defining stress, care must be taken to note that sometimes 
we are talking about a

Tensor – the Stress Tensor. 

 This completely characterizes the stress state at a particular 
location. That such a tensor exists is proved as Cauchy’s 
theorem – a fundamental law in Continuum Mechanics.

Vector - the Traction – Stress Vector

 Intensity of resultant forces on a particular surface in a 
specific direction. This is, roughly speaking, what we have in 
mind when we say that stress is “force per unit area.”

Scalar – the scalar magnitude of the traction vector or some 
other scalar function of the stress tensor.
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Three Stresses



“… a distinction is established between two types of forces 
which we have called ‘body forces’ and ‘surface tractions’, the 
former being conceived as due to a direct action at a distance, 
and the latter to contact action.” AEH Love

It is convenient to examine these forces by categorizing 
them as follows:

Body forces 𝒃 (force per unit mass); 

 These are forces originating from sources (fields of force 
usually) outside of the body that act on the volume (or mass) 
of the body. 

Surface forces i.e.: 𝒇(force per unit area of surface across 
they which they act)
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Two Forces



Body forces 𝒃 (force per unit mass); These are forces 
originating from sources - usually outside of the body

 Fields of force 
 Act on the volume (or mass) of the body. 

 These forces arise from the placement of the body in force 
fields
 Definition: A field of force is a Euclidean Point Space in which a 

force function is specified at every point 
 Examples: gravitational, electrical, magnetic or inertia 

 As the mass of a continuous body is assumed to be 
continuously distributed, any force originating from the 
mass is also continuously distributed. 

 Body forces are therefore assumed to be continuously 
distributed over the entire volume of the material.
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Body Forces



 Force per unit area of surface across they which they 
act and are distributed in some fashion over a surface 
element of the body

 Element could be part of the bounding surface, or an 
arbitrary element of surface within the body; 

 Examples: Shear stresses, normal stresses such as 
hydrostatic pressure, Wind loading, contact with 
another solid etc.
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Surface Forces
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 Forces on an element 𝑉 surrounding 
a point 𝑃 𝑥1, 𝑥2, 𝑥3 in a body acted 
upon by the forces 𝐅1, 𝐅2, … , 𝐅𝑛. 

 The resultant body force per unit 
volume is 𝒃 𝑥1, 𝑥2, 𝑥3 .

 Consider an infinitesimal area 
element oriented in such a way that 
the unit outward normal to its 
surface is 𝐧 𝑥1, 𝑥2, 𝑥3 .

 If the resultant force on the surface 
Δ𝑆 of Δ𝑉 is Δ𝑭, and this results in a 
traction intensity which will in 
general vary over Δ𝑆.

 Surface traction vector on this 
elemental surface be 𝑻, it is 
convenient to label this traction 

𝑻 𝒏 . The superscript 𝒏 emphasises 
the fact that this traction is the 
resultant on the surface whose 
outward normal is 𝒏. 

Forces on an 
Element
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 We can write that,

𝑻 𝒏 = lim
Δ𝑆→0

Δ𝑭

Δ𝑆
=
𝑑𝑭

𝑑𝑆
IMPORTANT NOTE: The traction 𝑻 𝒏 gets its direction, not from 𝒏
but from 𝑭. 𝒏 signifies the orientation of the surface on which it acts.

Or, conversely that

Δ𝑭 =  
Δ𝑆

𝑻 𝒏 𝑑𝑆

In general, 𝑻 𝒏 = 𝑻 𝒏 𝑥1, 𝑥2, 𝑥3 and 𝒏 = 𝒏 𝑥1, 𝑥2, 𝑥3 as the 
surface itself is not necessarily a plane. It is only as the limit is 
approached that 𝒏 is a fixed direction for the elemental area 
and Δ𝑭 and 𝑻 𝒏 are in the same direction. 
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Surface Forces on an Element



Furthermore, the body force per unit mass is 𝜚𝒃. The 
density 𝜚 = 𝜚 𝑥1, 𝑥2, 𝑥3 as it varies over the whole 
body. If the resultant body force in the volume element 
Δ𝑉 is Δ𝑷, we can compute the body force per unit 
volume

𝒃 =
1

𝜚
lim
Δ𝑆→0

Δ𝑷

Δ𝑉
=
1

𝜚

𝑑𝑷

𝑑𝑉

so that the body force on the element of volume

Δ𝑷 =  
Δ𝑉

𝜚𝒃𝑑𝑉 .
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Body Forces on an Element



Vector intensity of the vector force on the surface as 
the surface area approaches a limit. 

 It is defined for a specific surface with an orientation 
defined by the outward normal 𝒏. 

 This implies immediately that the traction at a given 
point is dependent upon the orientation of the surface. 
It is a vector that has different values at the same point 
depending upon the orientation of the surface we are 
looking at. 
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Surface Traction



It is a function of the coordinate variables.

 It is therefore proper to write,

𝐓 𝐧 = 𝐓 𝐧, 𝑥1, 𝑥2, 𝑥3 ≡ 𝐓 𝐧 𝑥1, 𝑥2, 𝑥3
to make these dependencies explicitly obvious

 In general, 𝐓 and 𝐧 are not in the same direction; that is, 
there is an angular orientation between the resultant 
stress vector and the surface outward normal. 

Surface Traction is expressed as the vector sum of its 

projection 𝑡𝑛 ≡ 𝐓
𝐧 ⋅ 𝐧 along the normal 𝐧 and 𝑡𝑠 ≡

𝐓 𝐧 − 𝑡𝑛𝐧 on the surface itself.
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Surface Traction



 It is easy to show that this shear stress vector is the 

surface projection of the resultant   𝐈 − 𝐧⊗ 𝐧 𝐓 𝐧 .
These normal and shearing components of the stress 
vector are called the normal and shear tractions
respectively. They are the scalar magnitudes of the 
normal and tangential components of the reaction on 
any surface of interest.
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Normal & Shearing Stresses



 The Euler–Cauchy stress principle states that upon any 
surface (real or imaginary) that divides the body, the 
action of one part of the body on the other is 
equipollent to the system of distributed forces and 
couples on the surface dividing the body, and it is 

represented by a vector field𝐓 𝐧 . In view of 
Newton’s third law of action and reaction, this 
principle can be expressed compactly in the equation,

𝐓 −𝐧 = −𝐓 𝐧
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Euler-Cauchy Stress Principle
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 Provided the stress vector 𝐓 𝐧 acting on a surface with 
outwardly drawn unit normal 𝐧 is a continuous function of 
the coordinate variables, there exists a second-order tensor 
field 𝝈(𝐱), independent of 𝐧, such that 𝐓 𝐧 is a linear 
function of 𝐧 such that:

𝐓 𝐧 = 𝝈𝐧

 The tensor 𝝈 in the above relationship is the tensor of 
proportionality and it is called Cauchy Stress Tensor. It is 
also the “true stress” tensor for reasons that will become 
clear later.
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Cauchy’s Theorem



 To prove this expression, consider a tetrahedron with 
three faces oriented in the coordinate planes, and with an 
infinitesimal base area 𝑑𝐴 oriented in an arbitrary direction 
specified by a normal vector 𝐧 (Figure 6.3). The 
tetrahedron is formed by slicing the infinitesimal element 
along an arbitrary plane 𝐧. The stress vector on this plane 
is denoted by 𝐓 𝐧 . The stress vectors acting on the faces 
of the tetrahedron are denoted as 𝑻 𝒆1 , 𝑻 𝒆2 and 𝑻 𝒆3

From equilibrium of forces, Newton’s second law of 
motion, we have

𝜚
ℎ

3
𝑑𝐴 𝒂 = 𝐓 𝐧 𝑑𝐴 − 𝐓 𝐞1 𝑑𝐴1 − 𝐓

𝐞2 𝑑𝐴2 − 𝐓
𝐞3 𝑑𝐴3

= 𝐓 𝐧 𝑑𝐴 − 𝐓 𝐞i 𝑑𝐴𝑖
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Cauchy Stress Theorem
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where the right-hand-side of the 
equation represents the product of 
the mass enclosed by the 
tetrahedron and its acceleration: 𝜚
is the density, 𝒂 is the acceleration, 
and ℎ is the height of the 
tetrahedron, considering the plane 
𝒏 as the base. 

𝜚
ℎ

3
𝑑𝐴 𝒂 = 𝑻 𝒏 𝑑𝐴 − 𝑻 𝒆1 𝑑𝐴1 − 𝑻

𝒆2 𝑑𝐴2 − 𝑻
𝒆3 𝑑𝐴3

= 𝑻 𝒏 𝑑𝐴 − 𝑻 𝒆𝑖 𝑑𝐴𝑖

http://en.wikipedia.org/wiki/File:Cauchy_tetrahedron.svg
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The area of the faces of the tetrahedron perpendicular to the 
axes can be found by projecting 𝑑𝐴 into each face:

𝑑𝐴𝑖 = 𝒏 ⋅ 𝒆𝑖 𝑑𝐴 = 𝑛𝑖𝑑𝐴

and then substituting into the equation to cancel out 𝑑𝐴:

𝐓 𝐧 𝑑𝐴 − 𝐓 𝒆𝑖 𝑛𝑖𝑑𝐴 = 𝜌
ℎ

3
𝑑𝐴 𝒂

To consider the limiting case as the tetrahedron shrinks to a 
point, ℎ → 0, that is the height of the tetrahedron 
approaches zero. As a result, the right-hand-side of the 
equation approaches 0, so the equation becomes,

𝐓 𝐧 = 𝑻 𝒆𝑖 𝑛𝑖
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Cauchy Theorem



We are now to interpret the components 𝑻 𝒆𝑖 in this 

equation. Consider 𝑻 𝒆1 the value of the resultant 
stress traction on the first coordinate plane. Resolving 
this along the coordinate axes, we have,

𝑻 𝒆1 = 𝒆1 ⋅ 𝑻
𝒆1 𝒆1 + 𝒆2 ⋅ 𝑻

𝒆1 𝒆2 + 𝒆3 ⋅ 𝑻
𝒆1 𝒆3

= 𝜎11𝒆1 + 𝜎12𝒆2 + 𝜎13𝒆3
= 𝜎1𝑗𝒆𝑗

Where the scalar quantity 𝜎1𝑗 is defined by the above 

equation as,

𝜎1𝑗 = 𝒆𝑗 ⋅ 𝑻
𝒆1

or in general, we write the components as,

𝜎𝑖𝑗 = 𝒆𝑗 ⋅ 𝑻
𝒆𝑖 , 𝑖 = 1,2,3
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Interpretation
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 Above figure is a graphical depiction of this definition 

where we can see that 𝜎𝑖𝑗 = 𝒆𝑗 ⋅ 𝑻
𝒆𝑖 is the scalar 

component of the stress vector on the 𝑖 coordinate plane 
in the 𝑗 direction. For any coordinate plane therefore, we 

may write, 𝑻 𝒆𝑖 = 𝜎𝑖𝑗𝒆𝑗, so that the stress or traction 

vector on an arbitrary plane determined by its orientation 
in the outward normal 𝒏, 

𝑻 𝒏 = 𝑻 𝒆𝑖 𝑛𝑖 = 𝜎𝑖𝑗𝒆𝑗𝑛𝑖

 Which is another way of saying that the component of the 
vector 𝑻 𝒏 along the 𝑗 coordinate direction is 𝜎𝑖𝑗𝑛𝑖 which 

is the contraction, 𝝈 𝐱, 𝑡 𝐧 = 𝑻 𝐧 . This proves Cauchy 
Theorem. 
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Interpretation



 Obviously, 𝜎𝑖𝑗 are the components of the stress tensor in 

the coordinate system of computation that we have used 
so far. The Cauchy law, being a vector equation remains 
valid in all coordinate systems. We will then have to 
compute the different values of the stress tensor in the 
system of choice when for any reason we choose to work 
in not-Cartesian coordinates.

 Earlier on, we introduced the normal 𝑡𝑛 ≡ 𝑻
𝒏 ⋅ 𝒏 and 

shearing 𝑻 𝒏 − 𝑡𝑛𝒏 components of the stress vector. We 
can compute these values now in terms of the scalar 
components of the stress tensor. Using Cauchy theorem, 
we have that,

𝜎 = 𝑡𝑛 ≡ 𝑻
𝒏 ⋅ 𝒏 = 𝝈 𝒙, 𝑡 𝒏 ⋅ 𝒏 = 𝒏 ⋅ 𝝈𝒏
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Normal Stress Again



 This double contraction defines the scalar value which 
is the magnitude of the stress vector acting in the 
direction of the normal to the plane. The other 
important scalar quantity – the magnitude of the 
corresponding projection of the traction vector to the 
surface itself is obtained from Pythagoras theorem:

 𝜏 = 𝑻 𝒏 − 𝑡𝑛𝒏 = 𝑻 𝒏 − 𝜎𝒏
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Shear Stress



 The arguments that proved Cauchy theorem could have 
been based on non-Cartesian coordinate systems. The 
stress equation must remain unchanged however and the 
stress tensor characterizing the state of stress at a point 
remains an invariant. As it is with any second-order tensor, 
its components in general coordinates will be obtained 
from,

𝛔(𝐱) = 𝜎𝑖𝑗𝐠
𝑖⊗𝐠𝑗= 𝜎𝑖𝑗𝐠𝑖⨂𝐠𝑗 = 𝜎.𝑗

𝑖 𝐠𝑖⊗𝐠𝑗= 𝜎𝑗
.𝑖𝐠𝑗⨂𝐠𝑖

 Because the Cauchy stress is based on areas in the 
deformed body, it is a spatial quantity and appropriate to 
an Eulerian kinematic formulation. Whenever it is more 
convenient to work in Lagrangian coordinates, a stress 
tensor based on this may become more appropriate. 
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Tensor Bases



From last chapter, we recall that the vector current area in a 
deformed body 𝑑𝒂 = 𝐽𝑭−𝑇𝑑𝑨where 𝑑𝑨 is its image in the 
material coordinates. The resultant force acting on an area 
bounded by Δ𝑆 in the deformed coordinates can be obtained, 
using Cauchy stress theorem as,

𝑑𝑃 =  
Δ𝑆

𝝈𝑑𝒂 =  
Δ𝑆0

𝐽𝝈 𝑭−𝑇𝑑𝑨

=  
Δ𝑆0

𝐽𝝈𝑭−𝑻𝑑𝑨

=  
Δ𝑆0

𝑵𝑇𝑑𝑨

 where 𝑵 ≡ 𝐽𝑭−1𝝈 is called the Nominal Stress Tensor
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Nominal Stress



 The transpose of the nominal stress is called the First Piola-
Kirchhoff Stress Tensor 𝒔. Consequently,

𝒔 ≡ 𝑵𝑇 = 𝐽𝝈𝑇 𝑭−𝑇

This transformation applied to 𝝈 to produce 𝒔,when applied 
as in this or any other case to any tensor is called a Piola
transformation. 

 In the above equation, we have used the yet-to be proved 
fact that the Cauchy stress tensor is symmetric. This will be 
established later.

 The components of the 𝒔 stress are the forces acting on 
the deformed configuration, per unit undeformed area. 
They are thought of as acting on the undeformed solid.
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First Piola-Kirchhoff Stress 



 Recall that the ratio of elemental volumes in the spatial to 
material, coordinates 

𝑑𝑣

𝑑𝑉
= 𝐽 = det 𝑭

where 𝑭 is the deformation gradient of the transformation. It 
therefore follows that the Kirchhoff stress 𝝉, defined by

𝝉 = 𝐽𝝈

is no different from Cauchy Stress Tensor during isochoric (or 
volume-preserving) deformations and motions. It is used 
widely in numerical algorithms in metal plasticity (where 
there is no change in volume during plastic deformation).
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Kirchhoff Stress



 The second Piola Kirchhoff Stress, 𝚵 is useful in Conjugate 
stress analysis. It is defined by,

𝑵 ≡ 𝐽𝑭−1𝝈 = 𝜩𝑭𝑇

 In terms of the Cauchy stress 𝝈we can write,
𝜩 = 𝐽𝑭−1𝝈𝑭−𝑇 .

 In terms of the nominal stress tensor, 𝜩 = 𝑵𝑭−𝑇 .
 Note that the First Piola-Kirchhoff Stress Tensor is not 

symmetric. On the other hand, the 2nd P-K tensor is 
symmetric just like the Cauchy tensor. Furthermore if the 
material rotates without a change in stress state (rigid 
rotation), the components of the 2nd Piola-Kirchhoff stress 
tensor will remain constant, irrespective of material 
orientation. It is also important as an energy conjugate to 
the Lagrange strain.
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Second Piola-Kirchhoff Stress



 As a second order symmetric tensor, the Cauchy Stress 
Tensor has positive definite quadratic forms when 
operated on by real vectors. Its eigenvalues are real and its 
principal invariants are:

 𝐼1 𝛔 = tr 𝛔 = 𝜎𝑖𝑗𝐠
𝑖 ∙ 𝐠𝑗= 𝜎𝑖𝑗𝐠𝑖 ∙ 𝐠𝑗 = 𝜎.𝑗

𝑖 𝐠𝑖 ∙ 𝐠
𝑗=

𝜎𝑗
.𝑖𝐠𝑗 ∙ 𝐠𝑖= 𝜎𝑖

.𝑖

 𝐼2 𝛔 =
tr(𝛔) 2− tr 𝛔𝟐

2
=
1

2
𝜎𝑖
𝑖𝜎𝑗
𝑗
− 𝜎𝑗

𝑖𝜎𝑖
𝑗

 (Half of the square of the trace of the tensor minus the 
trace of the square of the tensor 𝛔. The third and last 
scalar invariant of a tensor 𝛔 is its determinant if it exists.)

 𝐼3 𝛔 = det 𝛔 = 𝑒𝑖𝑗𝑘𝜎𝑖
1𝜎𝑗
2𝜎𝑘
3
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Extremal Values & Principal Planes



 Because of its simplicity, working and thinking in the principal coordinate 
system is often very useful when considering the state of the elastic medium at 
a particular point. Principal stresses are often expressed in the following 
equation for evaluating stresses in the 𝑥 and 𝑦 directions or axial and bending 
stresses on a part. The principal normal stresses can then be used to calculate 
the Von Mises stress and ultimately the safety factor and margin of safety

𝜎1, 𝜎2 =
𝜎𝑥 + 𝜎𝑦

2
±

𝜎𝑥 − 𝜎𝑦

2

2

+ 𝜏𝑥𝑦
2

 Using just the part of the equation under the square root is equal to the 
maximum and minimum shear stress for plus and minus. This is shown as:

𝜏1, 𝜏2 = ±
𝜎𝑥 − 𝜎𝑦

2

2

+ 𝜏𝑥𝑦
2 .

We are now in a position to recalculate the normal and shearing components of 
the traction vector 𝑻 𝒏

oafak@unilag.edu.ng  12/30/2012Department of Systems Engineering, University of Lagos 32

Stress Systems



𝜎 = 𝒏 ⋅ 𝝈𝒏 = 𝑛1 𝑛2 𝑛3

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

𝑛1
𝑛2
𝑛3

= 𝜎1(𝑛1)
2 + 𝜎2(𝑛2)

2 + 𝜎3(𝑛3)
2

And the shear stress is the scalar magnitude of, 

𝑻 𝒏 − 𝑡𝑛𝒏 = 𝝈𝒏 − 𝒏 ⋅ 𝝈𝒏 = 𝝈 − 𝒏 ⋅ 𝝈 𝒏

=

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

−

𝑛1𝜎1 0 0
0 𝑛2𝜎2 0
0 0 𝑛3𝜎3

𝑛1
𝑛2
𝑛3

∴ 𝜏

= (𝜎1𝑛1)2 + (𝜎2𝑛2)2 + (𝜎3𝑛3)2 − 𝜎1(𝑛1)2 + 𝜎2(𝑛2)2 + 𝜎3(𝑛3)2 2

 From these, we can write in a more compact form that,
𝜎2 + 𝜏2 = (𝜎1𝑛1)

2 + (𝜎2𝑛2)
2 + (𝜎3𝑛3)

2
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 The values of normal and shear stresses given in terms of 
the principal coordinates can be solved (using 
Mathematica) after noting that, (𝑛1)

2 + (𝑛2)
2 + (𝑛3)

2 =
0 as shown below to obtain the Mohr circle of stress in 
three dimensions.

 The values of the square of the direction cosines follow the 
three circles
(𝑛1)

2 ∝ 𝜎2 + 𝜏2 − 𝜎𝜎3 + 𝜎2 𝜎3 − 𝜎 (𝑛2)
2 ∝ 𝜎2 + 𝜏2 − 𝜎𝜎3

+ 𝜎1 𝜎3 − 𝜎
(𝑛3)

2 ∝ 𝜎2 + 𝜏2 − 𝜎𝜎2 + 𝜎1 𝜎2 − 𝜎

 In the figure, we used the symbols, 𝛼1 = (𝑛1)
2, 𝛼2 =

(𝑛2)
2and 𝛼3 = (𝑛3)

2 with principal stress values of 𝜎1 =
50, 𝜎2 = 15, 𝜎3 = 5.
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Mohr Circle 
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We present here examples of states of stress as an 
illustration:

1. Hydrostatic Pressure

2. Uniaxial Tension

3. Equal Biaxial tension

4. Pure Shear 
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States of Stress



𝝈 𝐱 = −𝑝𝟏 = −𝑝𝑔𝑖𝑗 𝐠𝑖⊗𝐠𝑗 = −𝑝 𝐠𝑖⊗𝐠𝑖

In a Cartesian system, we have, 𝝈 𝐱 = −𝑝𝟏 = −𝑝 𝐞𝑖⊗𝐞𝑖 .

For a surface whose outward normal is the unit vector 𝐧, the 
traction

𝐓 𝐧 = 𝝈 𝐱, 𝑡 𝐧 = −𝑝𝑔𝑖𝑗 𝐠𝑖⊗𝐠𝑗 𝐧

= −𝑝𝑔𝑖𝑗𝐠𝑖 𝐧 ⋅ 𝐠𝑗 = −𝑝𝑔
𝑖𝑗𝑛𝑗𝐠𝑖

= −𝑝𝑛𝑖𝐠𝑖 = −𝑝𝐧

Furthermore, the scalar normal traction

𝜎 = 𝐓 𝐧 ⋅ 𝐧 = −𝑝𝐧 ⋅ 𝐧 = −𝑝

And the shear stress: the magnitude of the vector difference 
between the traction and the vector normal traction.

𝜏 = 𝐓 𝐧 − 𝜎𝐧 = 0
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Hydrostatic Pressure



Define uniaxial tension as a state where there is a 
normal traction 𝑡 in a given direction (unit vector 𝛂)and 
zero traction in directions perpendicular to it. The 
Cauchy stress for this is  𝝈 𝐱 = 𝑡 𝛂⊗ 𝛂 . The traction 
on a surface with unit vector 𝐧 is,

𝐓 𝐧 = 𝝈 𝒙 𝐧 = 𝑡 𝛂⊗ 𝛂 𝒏
= 𝑡𝛂 𝒏 ⋅ 𝛂 = 𝑡𝛂 cos 𝜙

From which we can see that, under uniaxial stress, the 
traction is always directed along the vector 𝛂 no matter 
what the orientation of the surface might be.

Of course, when 𝜙 = 𝜋/2, traction is zero.
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Uniaxial Tension



Consider the stress tensor, 𝝈 𝐱 = 𝑡 𝛂⊗ 𝛂 + 𝛃⊗ 𝛃
where 𝛂 and 𝛃 are perpendicular directions. The 
traction on an arbitrary plane 𝐧

𝐓 𝐧 = 𝝈 𝒙 𝐧 = 𝑡 𝛂⊗ 𝛂 + 𝛃⊗ 𝛃 𝐧
= 𝑡𝛂 𝐧 ⋅ 𝛂 + 𝑡𝛃 𝐧 ⋅ 𝛃 = 𝑡𝛂 cos 𝜙 + 𝑡𝛃sin𝜙

The eigenvalues of 𝝈 𝐱 are 𝑡, 𝑡, 0 . 𝝈 𝐱 this case has 
the spectral form, 

𝝈 𝐱 = 𝑡𝐮1⊗𝐮1 + 𝑡𝐮2⊗𝐮2
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Biaxial Traction



Consider the stress tensor, 𝝈 𝐱 = 𝑡 𝛂⊗ 𝛃 + 𝛃⊗ 𝛂
where 𝛂 and 𝛃 are perpendicular directions. The 
traction on an arbitrary plane 𝐧

𝐓 𝐧 = 𝝈 𝒙 𝐧 = 𝑡 𝛂⊗ 𝛃 + 𝛃⊗𝛂 𝐧
= 𝑡𝛂 𝐧 ⋅ 𝛃 + 𝑡𝛃 𝐧 ⋅ 𝛂 = 𝑡𝛂 sin 𝜙 + 𝑡𝛃cos𝜙

The eigenvalues of 𝝈 𝐱 are 𝑡, −𝑡, 0 . Furthermore, 𝝈 in 
this case has the spectral form, 

𝝈 𝐱 = 𝑡𝐮1⊗𝐮1 − 𝑡𝐮2⊗𝐮2
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Pure Shear



Theory of Heat Fluxes
Fourier Stokes Heat Flux Theorem



Cauchy’s postulated the existence of a stress tensor on 
the basis of which the load intensity arising from 
mechanical forces (body and surface forces) can be 
elegantly quantified in a consistent manner. 

The counterpart of this for thermal exchanges with the 
surroundings is the Fourier-Stokes heat flux theorem.
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Heat Fluxes



Consider a spatial volume B𝑡 with boundary 𝜕B𝑡. Let 
the outwardly drawn normal to the surface be the unit 
vector n. Fourier Stokes heat Flux Principle states that

∃𝐪 𝐱, 𝑡 − vector field such that, the heat flow out of 
the volume is 

ℎ 𝐱, 𝑡, 𝜕B𝑡 = ℎ 𝐱, 𝑡, 𝐧
= −𝒒 𝐱, 𝑡 ⋅ 𝐧

𝒒 𝐱, 𝑡 is called the heat flux through the surface.
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Fourier-Stokes Theorem



Heat flow into the spatial volume B𝑡 volume is

 
𝜕B𝑡

𝒒 𝐱, 𝑡 ⋅ 𝐧 𝑑𝑎 =  
𝜕B
𝐽𝒒 𝐱, 𝑡 ⋅ 𝐅−T𝐍𝑑𝐴

=  
𝝏B
𝐽𝐅−1𝒒 𝐱, 𝑡 ⋅ 𝑑𝑨

𝐐 𝑿, 𝑡 is a Piola transformation of the spatial heat flux. 
That is,

𝐐 𝑿, 𝑡 = 𝐽𝐅−1𝒒 𝐱, 𝑡
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Fourier-Stokes Theorem


