Homework 2.1

Gurtin 2.6.1

3. Show that that if the tensor T is invertible, for any vector k, Tk = o
automatically means that k = o.

4. Show that if the vectors u, v and w are independent and T is invertible,
then the vectors Tu, Tv and Tw are also independent.

5. Show thatw X (w ® w) = 0 and that (w X)(w X) = w ® w — ||w]|?1
6. Gurtin 2.8.5
7. Gurtin 2.9.1
8. Gurtin 2.9.2
9. Gurtin2.9.4

Due April 14, 2015
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14.
15.

16.

17.

18.

Homework 2.2
urtin 2:11:4

. l‘
Gurtin 2.11.5

Let Q be a rotation. For any pair of independent vectors u, v show that
Q(u xv) = (Qu) x (Qv)

For a proper orthogonal tensor Q, show that the eigenvalue equation
always yields an eigenvalue of +1.

For an arbitrary unit vector e, the tensor, Q(8) = cos (6)1 + (1 —

cos (8))e ® e + sin (0) (e X) where (e X) is the skew tensor whose ij
component is €j;,ex, show that Q(6)(1 —e® e) =cos (0) (1 —e ®
e) + sin (8) (e X).

For an arbitrary unit vector e and the tensor, Q(8) defined as above,
Show for an arbitrary vector u that v = Q(6)u has the same
magnitude as u.

Due April 21 2015
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Gurtin 2.13.1 \

>. If the reciprocal relationship, g; - g/ = 5ij is satisfied,
what relationship is there between the tensor bases (1)

g ®g;andg” ®gF,and (2) g' ® gjand g, ® gF?
3. Gurtin 2.14.1

4. Gurtin 2.14.2

5. Gurtin 2.14.3

6. Gurtin 2.14.4

7. Gurtin 2.14.5

8. Gurtin 2.15 1-33, 3b, 3¢
9. Gurtin 2.16 1-8

Due April 28, 2015
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For a given a tensor T and its transpose T, Write out

expressions for the

1. Symmetric Part

2. Skew Part

3. Spherical Part

4. Deviatoric Part.

What is the magnitude of T?

oafak@unilag.edu.ng 4
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Tensor Algebra

Tensors as Linear Mappings




Apr 7 to Apr 21, 2015
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8 Orthogonal Tensors 88
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9 Decomposition & Cayley Hamilton 100 21 Apr
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Second Order Tensor

\’

A second Order Tensor T is a linear mapping from a
vector space to itself. Given u € @ the mapping,

T:-e —>e
statesthata w € e such that,

T(u) =w.
Every other definition of a second order tensor can be
derived from this simple definition. The tensor

character of an object can be established by observing
its action on a vector.
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\’

* The mapping is linear. This means that if we have two
runs of the process, we first input u and later input v.
The outcomes T(u) and T(v), added would have
been the same as if we had added the inputs u and
v first and supplied the sum of the vectors as input.
More compactly, this means,

T(u+v)=Tu)+TV)

oafak@unilag.edu.ng 8 Tuesday, April 7, 2015



Linearity

T

at, cala
T(au) T(u) e
The two properties can be added so that, givena,f € a , and
u,v € e, then

T(au + fv) = aT(u) + BT(v)
Since we can think of a tensor as a process that takes an
input and produces an output, two tensors are equal only if
they produce the same outputs when supplied with the same
input. The sum of two tensors is the tensor that will give an

output which will be the sum of the outputs of the two
tensors when each is given that input.

Linearity further me

—
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Vector Space
"

Ingeneral,a,f €a ,uvee andS,TEC
aSu + fTu = (a$S + fT)u

With the definition above, the set of tensors constitute
a vector space with its rules of addition and
multiplication by a scalar. It will become obvious later
that it also constitutes a Euclidean vector space with its
own rule of the inner product.
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Special Tensors

\

Notation.

It is customary to write the tensor mapping without the
parentheses. Hence, we can write,

Tu= T(u)
For the mapping by the tensor T on the vector variable
and dispense with the parentheses unless when
needed.

oafak@unilag.edu.ng 1 Tuesday, April 7, 2015



Zero Tensor or Annihilator

\\

The annihilator O is defined as the tensor that maps all
vectors to the zero vector, o:
Ou = o, Yu e e
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\

The identity tensor 1 is the tensor that leaves every
vector unaltered. Vu € e ,

lu=u
Furthermore, Va € a , the tensor, al is called a
spherical tensor.

The identity tensor induces the concept of an inverse of
a tensor. Given the factthatif T € ¢c andu € e , the
mapping w = Tu produces a vector.
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\’

Consider a linear mapping that, operating on w,
produces our original argument, u, if we can find it:

Yw=u
As a linear mapping, operating on a vector, clearly, Y is a
tensor. It is called the inverse of T because,
Yw=YTu=u
So that the composition YT = 1, the identity mapping.
For this reason, we write,
Yy=T7"1

oafak@unilag.edu.ng 14 Tuesday, April 7, 2015
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It is easy to show thatif YT = 1,thenTY = YT = 1.
* HW: Show this.

The set of invertible sets is closed under composition. It
IS also closed under inversion. It forms a group with the
EAAT OEOU OAT Ol O AO OEA colI O
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Transposition of Tensors

‘\

Givenw,v € e , The tensor A! satisfying
w- (ATv) =v- (Aw)
Is called the transpose of A.

A tensor indistinguishable from its transpose is said to
be symmetric.
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There are certain mappings from the space of tensors
to the real space. Such mappings are called Invariants of
the Tensor. Three of these, called Principal invariants
play key roles in the application of tensors to continuum
mechanics. We shall define them shortly.

The definition given here is free of any association with
a coordinate system. It is a good practice to derive any
other definitions from these fundamental ones:

oafak@unilag.edu.ng 17 Tuesday, April 7, 2015



\

[a,b,c]=a-bxc
* where a, b, and c are arbitrary vectors.

If we write

For any second order tensor T, and linearly

independent a, b, and ¢, the linear mapping I;:¢ — a

[Ta,b,c] + [a,Tb,c] + [a,b, Tc]
|a, b, c]

Is independent of the choice of the basis vectors a, b,
and c. It is called the First Principal Invariant of T or
Trace of T = tr(T) = I,(T)

1,(T) = tr(T) =

oafak@unilag.edu.ng 18 Tuesday, April 7, 2015



\

The trace is a linear mapping. It is easily shown that
a,f€ea ,andS, TeEc

tr(aS + BT) = atr(S) + ptr(T)
HW. Show this by appealing to the linearity of the
vector space.

While the trace of a tensor is linear, the other two
principal invariants are nonlinear. WE now proceed to
define them
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Square of the trace
\

The second principal invariant I, (S) is related to the

trace. In fact, you may come across books that define it
so. However, the most common definition is that

1
1(8) =5 [IF($) = (5™

Independently of the trace, we can also define the
second principal invariant as,

oafak@unilag.edu.ng 20 Tuesday, April 7, 2015



Second Principal Invariant

\

The Second Principal Invariant, I, (T), using the same

notation as above is
[(Ta), (Th),c] + |a,(Th),(Tc)| + [(Ta), b, (Tc)]

la, b, c]
=~ [tr2 (1) — u(12)]

that is half the square of trace minus the trace of the
square of T which is the second principal invariant.

* This quantity remains unchanged for any arbitrary
selection of basis vectors a, b and c.
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The Determinant
.‘

The third mapping from tensors to the real space
underlying the tensor is the determinant of the tensor.
While you may be familiar with that operation and can
easily extract a determinant from a matrix, it is
important to understand the definition for a tensor that
is independent of the component expression. The latter
remains relevant even when we have not expressed the
tensor in terms of its components in a particular
coordinate system.
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The Determinant
\

As before, For any second order tensor T, and any
linearly independent vectors a, b, and c,

* The determinant of the tensor T,
Ta),(Th),(Tc
det(T) = [(Ta), (Th),(Tc)]
la, b, c]
(In the special case when the basis vectors are
orthonormal, the denominator is unity)
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Other Principal Invariants

* It is good to note that there are other principal
invariants that can be defined. The ones we defined
here are the ones you are most likely to find in other
texts.

* Aninvariant is a scalar derived from a tensor that
remains unchanged in any coordinate system.
Mathematically, it is a mapping from the tensor space
to the real space. Or simply a scalar valued function
of the tensor.
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Deviatoric Tensors

\

* When the trace of a tensor is zero, the tensor ls-said to be

traceless. A traceless tensor is also called a deviatoric
tensor.

* Given any tensor S, A deviatoric tensor may be created
from S by the following process:

1
So EdeVSES—g(tI‘S)].:S—Sl

So that s = %(tr S); s1is called the spherical part, and S, as
defined here is called the deviatoric part of S.

Every tensor thus admits the decomposition,
S$=§,+s1

oafak@unilag.edu.ng 25 Tuesday, April 7, 2015



Inner Product of Tensors
.’

The trace provides a simple way to define the inner
product of two second-order tensors. Given S,T € C

The trace,

tr(STT) = tr(STT)
Is a scalar, independent of the coordinate system

chosen to represent the tensors. This is defined as the
inner or scalar product of the tensors § and T. That is,

S:T = tr(STT) = tr(STT)
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Attributes of a Euclidean Space
\

The trace automatically induces the concept of the
norm of a vector (This is not the determinant! Note!!)
The square root of the scalar product of a tensor with
itself is the norm, magnitude or length of the tensor:

IT|| = /tr(TTT) =VT: T
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Distance and angles

\

Furthermore, the distance between two tensors as well
as the angle they contain are defined. The scalar
distance d (8, T)between tensors S and T :

ds,T) =|IS=TIl =T -S|

And the angle 6(S,T),

" S: T
ST

6 = cos™
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The Tensor Product

\

. -
A product mapping from two vector spacesto C is
defined as the tensor product. It has the following
properties:

"X"':e xXe -
(uUuQ@Qv)w= - -wu
It is an ordered pair of vectors. It acts on any other
vector by creating a new vector in the direction of its
first vector as shown above. This product of two
vectors is called a tensor product or a simple dyad.
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Dyad Properties

simply a reversal of its order. (Show
The tensor product is linear in its two factors.

Based on the obvious fact that for any tensor T and
uv,wee ;TuQvw=Tulwv -w) =[(Tu) Q vlw
It is clear that

Tu®v)=Tu) Qv
Show this neatly by operating either side on a vector
Furthermore, the contraction,

URVT=u® (TTv)
A fact that can be established by operating each side
on the same vector.
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Transpose of a Dyad

[—

Recall that for w, v r £ 0
w-(ATv) =v-(Aw)
Is called the transpose of A. Now let A = a @ b a dyad.
v (Aw) =
=v-[(a®b)w] = v-[a(b-w)]
=Ww-a)b-w)= (w-b)(v-a)
=w-(bQ a)v
Sothat(a®@ b)) =b ® a

Showing that the transpose of a dyad is simply a
reversal of its factors.
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If n is the unit normal to a given plane,
tensor T = 1 — n Q nis such that Tu is the projection
of the vector u to the plane in question.

Consider the fact that
Tu=1lu—-(n-u)n=u—(n-u)n
The above vector equation shows that Tu is what
remains after we have subtracted the projection
(n - u )n onto the normal. Obviously, this is the

projection to the plane itself. T as we shall see later is
called a tensor projector.
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Substitution Operation

Consider a contra mponel
product of this with the Kronecker Delta —

stak
J
which gives us a third-order object. Let us now perform a
contraction across (by taking the superscript index from A*
and the subscript from §;) to arrive at,

* di — 5jiaj
* Observe that the only free index remaining is the
superscript i as the other indices have been contracted (it

is consequently a summation index) out in the implied
summation. Let us now expand the RHS above, we find,
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Substitution

Note the following cases:

*ifi =1, we haved! = al,ifi = 2, we have d? = a* if
i = 3, we have d3 = a3. This leads us to conclude
therefore that the contraction, §fa’ = a'. Indicating
that that the Kronecker Delta, in a contraction,
merely substitutes its own other symbol for the
symbol on the vector a’it was contracted with. This

fact, that the Kronecker Delta does this in general
earned it the alias of “Substitution Operator”.

oafak@unilag.edu.ng 34 Tuesday, April 7, 2015



Composition with

Operate on the vector z and let . O
(U@ vV)Tz=(uRQv)w
On the RHS, we have:

(u R (TTv)) Z=1u ((TTv) : z) =u (z : (TTv))

Since the contents of both sides of the dot are vectors
and dot product of vectors is commutative. Clearly,

u (z- (TTv)) =u® (v (Tz))
follows from the definition of transposition. Hence,

(u 028 (TTv)) z=ulv-w) = uUuRv)w
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Dyad on Dyad Composition

Foru,v,w,x € € ; We can show tha

composition,
URVWRx)=ux)(v w)

Again, the proof is to show that both sides produce the

same result when they act on the same vector. Lety €
e , then the LHS on y yields:

U@V (W x)y =(uv)wkx-y)]
=u(v-w)(x-y)
Which is obviously the result from the RHS also.

This therefore makes it straightforward to contract
dyads by breaking and joining as seen above.
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Trace of a Dyad
\

Show that the trace of the tensor productu @ vis u -
V.

Given any three independent vectors a, b, and ¢, (No
loss of generality in letting the three independent
vectors be the curvilinear basis vectors g, g, and g5).
Using the above definition of trace, we can write that,
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Trace of a Dyad

‘\

{(u®vV)gi},82 8]+ g, {u®V) g,},83] +[81, 82 {(u @ v)gall

t =
r(u@v) (81,82, 83]

1
= ?23{[1?1“,82;83] + (81, V2w, 83] + (81,82, v3ul}

1 . . :
- ?23{(171“) - (€23:8") + (€31:8") - (v20) + (€12:8") - (3w}

1 .
N ?23{(771“) - (€2318") + (€31287) - (W) + (€1238%) - (VW) = vy
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Other Invariants of a Dyad
\

* It is easy to show that for a tensor product
D=u®uv Yu,v eEe
I,(D) =15(D) =0
HW. Show that this is so.
We proved earlier that I,(D) = u - v

Furthermore, if T € C , then,
tr(Tu®®v)=triw®@®v)=w-v=Tu-v

oafak@unilag.edu.ng 39
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The Third Invariant of a Dyad

D:ugv Vu,m
tors, Bas

Let a, b, c € e be arbitrary, linearly independent vectors. Basis vectors are
just an example of three such vectors.

[(u®v)a, (u@ v)b,(uQ v)c]

[a, b, c]
[(v-a)u,(v-b)u,(v-c)ul

[a, b, c]

=0
Because the brackets in the numerator contains three parallel vectors so their
scalar triple product must vanish.

It is equally easy to show that the second invariant id zero. But keep these in
mind as | will ask you to show they vanish by looking at their components. We
go now to define the components of a tensor.

Is(D) —
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Tensor Bases & Component

Representation

\’

GivenT € c, forany basisvectorsg; € e ,i=1,2,3
T] ETg] e e ,j = 1,2,3

by the law of tensor mapping, T; is a vector. We
proceed to find the components of T; on this same

basis. Its covariant components, just like in any other
vector are the scalars,

(TOI)] — ga * T] (write out the nine equations we are representing here).

Specifically, these components are ((Tl)j, (T,);, (T3)j)
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Tensor Components

\’

We can dispense with the parentheses and write that

Taj = (Ta)j =T; - 8a
So that the vector
Tg; =T; =Ty;8"
The components T;; can be found by taking the dot
product of the above equation with g;:

g (Tg;) =T, (g -89 =Ty
T;; = gi - (Tg;)
=tr(Tg; ®g;) =T:(8: D g))
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Tensor Components

\’

The component T;; is simply the result of the inner
product of the tensor T on the tensor product g; ® g ;.

These are the components of T on the product dual of
this particular product base.

This is a general result and applies to all product bases:

It is straightforward to prove the results on the
following table:
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Tensor Components

\

Components of T Full Representation

T (g ®g) T=T;gQ¢g
(g ®g) T=T'g®g
i T:(g,®g) T-= /g ®g;
ik T (g’ ®g) T=Tg;, Qg
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ldentityTensor Components

It is easily verified from the definition o | ~
tensor and the inner product that: (HW Verlfy thIS)

Components of 1 Full Representation

(l)l, gu 1:(8: ® g;) 1=y,8Q¢g

()Y = gV 1:(g' @ g’) 1=g7g; ®g;

(1), =6’ 1: (g’ @ g) 1—61g1®gi=gj®gf

Showing that the Kronecker deltas are the components of the

identity tensor in certain (not all) coordinate bases.
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Kronecker and Metric Tensors

‘\

* The above table shows the interesting relationship

between the metric components and Kronecker
deltas.

* Obviously, they are the same tensors under different
bases vectors.
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Component Representation

It is easy to show that the above tables of compc
representations are valid. Foranyvee ,andT €C,

(T-Tg Qg )v=Tv-T;(g' @g/)v
Expanding the vector in contravariant components, we have,
" Tv—-Ty(g' ®g/)v= Tv*g, —T;(g' @ g’) v¥g,

=Tvg, — T;jv*g' (g’ - 8a)
= Tv%g, — Tijv“gi(Sé
=T, v* —T;jv/g- =T, v* — T;v/
=0
~T=T;8' Qg
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\

The transpose of T =T;;8' @ g/ isT" =T;;8' @ g
If T is symmetric, then,
T8 Qg =T,8 Qg' =T;g' Q g
Clearly, in this case,
Ty = Tji
It is straightforward to establish the same for

contravariant components. This result is impossible to
establish for mixed tensor components:
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\’

For mixed tensor components,
T=T/g' Qg;
The transpose,
T'=T/g; ®g'=T/'g; ®g
While symmetry implies that,
T=T/g' Qg =T"=T'g;®¢g
We are not able to exploit the dummy variables to bring the

two sides to a common product basis. Hence the symmetry is
not expressible in terms of their components.
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AntiSymmetry

A tensor is antisy ts transpo
product bases that are either covariant or contravariant,
antisymmetry, like symmetry can be expressed in terms of

the components:
The transpose of T =T;;8' @ g/ isT" =T;;8' ® g".
If T is antisymmetric, then,
Tg @g =-Tg’ ®g' =-Tg' g’
Clearly, in this case,

Ty = —Tj;
It is straightforward to establish the same for contravariant

components. Antisymmetric tensors are also said to be skew-
symmetric.
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Symmetric & Skew Parts of Tensors

For any tensor T, de

" T 1 i
sym T = E(T + TT), and skw T = E(T — TT). Itis easy
to show the following:

T=symT+skwT

skw(sym T) = sym(skw T ) =0
We can also write that,
1 . .
symT = 5 (T;; +Ti)g' ® g’
and

1 . .
skw T = E(Tij — Tji)gl ® g]
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Composition

Composition of tensors in component form follows the
rule of the composition of dyads.

T = Tijgi X g
S=57g ®g;

TS =(TYg; ®8;)(S*8, D gp)
=TUs%(g; @ g,)(g. D g5)
=TS g, @ 8pYja

=T'SPg @ gp
=T, 5Yg, Q g;
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Addition

‘\

* Addition of two tensors of the same order is the
addition of their components provided they are
refereed to the same product basis.
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Component Addition
‘\

Components

Tij +Sij (Tl] +Sl])gl (124 gJ
IV +5° (T9 +5Y)g: ®@s;

A (7 esh)e e

T] +S] (1] +s])g; ® ¢
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Component Representation of

Invariants

\’

* Invoking the definition of the three principal
invariants, we now find expressions for these in terms
of the components of tensors in various product
bases.

* First note that for T = T;;g" ® g/, the triple product,
[{Tgl}»gz_»gs] = [{(Tijgi X gj) 81}:82:83]
= [{Tijgi51] }:82»83] = [Ti1gi ' (523181)] = Ti1gi1€231
* Recall that g; X g; = €, 8"
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\

The Trace of the Tensor T = T;;8' ® g’
[1T81},82, 83 + (81,1782}, 831 + 81, 82,1783}

[81;82»83]
Ti19" €531 + Ting*2 €312 + TizgS €123

€123
- ngll + leglz + T13913 Tl]gl] = Tl

tr(T) =
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Second Invariant

(Ta), (TH B
a, (Th), (Tc)] = €;j.a'T] bPTcY
(Ta), b, (Tc)] = €;;xTia*b T cY
Changing the roles of dummy variables, we can write,
* [(Ta), (Th), c| + [a,(Th),(Tc)] + [(Ta), b, (Tc)]

= eaﬁkTi“aiT}ﬁbjck + eiﬂyaiY}ﬁbfT,l/ck + €4, TFa'bI T/ c*

- (Tl-“’l}ﬂeaﬁk + TjﬂT,Zeiﬁy + Ti“T,z/eajy) atb’ck

1 .
=E(T0?Tﬁﬁ — B“Tf) €ijratb’ ck
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Second Invariant

Contracting the coefficien
(70T eape + T T €1y + TET) €0y ;
with ek

etk (Ti“’l}ﬁeaﬁk + T}ﬂT,ZeiBy + Ti“T,Zeajy)
—(s5is) — 5/ 80 P jsk _ sisk\mBry
= (048 — 8264) 101 + (858¢ — 870f ) 1/}
+ (8L8K — sks)TFT!
=TE TY —TETY + TETS — TET)

=3 (181} - 14T
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Similarly, contractingeijkwm-

eV’e; i = 6.
Hence
(Ti“T}ﬂeaﬂk -+ T}ﬁT,l/eiﬁy -+ Ti“T,Zeajy) albhlck
€;jratblck

3 (TO‘Z‘TBB = [)?Tf) a‘b’ck
B 6atbick

(re1f — 1477 ) eipealbich g,
B 2€;jath’ ck 2 (Ta g =T Ta )

* Which is half the difference between square of the trace and the
trace of the square of tensor T.

oafak@unilag.edu.ng 59 Tuesday, April 7, 2015



Third Invariant; Component Form

‘\

[(Ta), (Tb), (TC)] = €3 TLa“T] bP T} cY
= eijchiTl{T)l‘a“bﬁcV
= eijleiszTé‘eaﬁya“bﬁcV
= det(T)eaﬁya“bﬁcV
So that,

I3(T) = det(T) = € TiT) TX
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Component Form

€jiTaly Ty = €jicTiT 81
We do this by first establishing the fact that the LHS is

completely antisymmetricin a, f and y. We first note that
the indices i, j and k are dummy and therefore,

€jkTaTy Ty = €iiiTa T3 Ty = €Ty Ta Ty = —€ij Ty T T
Hence we see immediately that a simple swap of a and
Yy changes sign just as any other two lower symbols. Also
note that the both sides take the same values when «, f and
y take the values of 1,2 and 3. The swapping of the indices

a, f and y makes this value positive or negative in the same
antisymmetric way. This completes the proof of equality.

oafak@unilag.edu.ng 61 Tuesday, April 7, 2015



The Vector Cross

Given avectoru = u'g;, the ten

(u X) = €5u"g" Qg
is called a vector cross. The following relation is easily
established between a the vector cross and its
associated vector:

Vvee ,(uX)v=uxv

The vector cross is tracelessand antisymmetric (HW.
Show this)

Traceless tensors are also calleyviatoricor deviator
tensors.

=
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Axial Vector

T =

* For any antisymmetric tensor Q, 3w € e ; such that
Q= (w X)

w which can always be found, is called the axial vector
to the skew tensor.

It can be proved that

w = _Eeijkﬂjkgi = _Eeijkﬂjkgi
(HW: Prove it by contracting both sides'c')f Qjj = €jqjw"
with e/Fwhile noting that e/F e, ; = 55 = —26F)

laj
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Examples

Gurtin 2.8.5 Show that for any two vectc :
product (u X): (v X) = 2u - v. Hence show that ||u x|| = V2||ull

(u X) = E”kujgi ® gk;_(_V X) = €mnv™g" ® g". Hence,
(ux): (v X) = €5y v™(g; @ g1): (8! ® 8")
= eY* e muv™(g; - 8')(8k - 8™)

ijk melsen _ _ijk m
T €mnujv" ;6 = €Y  €impuiv

=€
= 26 uv™ =2uv) =2u- v

The rest of the result follows by settingu = v

HW. Redo this proof using the contravariant alternating tensor

components, €% and '™,
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g Clear’ly,
(u x)(v x)(w x)

e

= —€mneP el uv,wi (g, D g4)(8' ® 8™)(8: ® g;)

= - e utv, wy (8, ® 8;)8567"
= —e™ epefuny,w (g8, @ g;)

= —€'%e e uv,wi (g, @ 8/)
= —(6268Y — 6258) ek umv, wy (g, ® g;)
= —eTuvw (g, ® g;) + e urv,w(g; ® g;)
=u® (vxw)—(u-v)w X]
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Index Raising & Lowering
e

9ij = 8i"8j and g’ =g -g
These two quantities turn out to be fundamentally
important to any space that which either of these two
basis vectors can span. They are called the covariant
and contravariant metric tensors. They are the
quantities that metrize the space in the sense that any

measurement of length, angles areas etc are dependent
on them.
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Index Raising & Lowering

Now we start with the fact that the contravariant and
covariant components of a vectora,a’ = a - g/, a; =
a - g; respectively. We can express the vector a with
respect to the reciprocal basis as

a=a;g
Consequently,

al =a- g/ =ag- g =gYq

The effect of g¥ contracting g%/ with a; is to raise and
substitute its index.
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Index Raising & Lowering
e

With similar arguments, it is easily demonstrated that,
a; = gija’
So that g;, in a contraction, lowers and substitutes the

index. This rule is a general one. These two components
are able to raise or lower indices in tensors of higher
orders as well. They are called index raising and index
lowering operators.
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Associated Tensors
.’

Tensor components such as a; and a’ related through
the index-raising and index lowering metric tensors as
we have on the previous slide, are called associated
vectors. In higher order quantities, they are associated
tensors.

* Note that associated tensors, so called, are mere
tensor components of the same tensor in different
bases.
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Cofactor Definition

We will define the cofactor of atensor T as,‘
cofacT=T =T TdetT

and proceed to show that, for any pair of independent

vectors u and v the cofactor satisfies,

TuXxTv=T(uxXv)

We will further find an invariant component

representation for the cofactor tensor. Lastly, in this

section, we will find an important relationship between

the trace of the cofactor and second invariant of the
tensor itself: tr(T¢) = I,(T)
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Transformed Basis

_________ Hle t a
vectors u and v implies the'independe >f vectors Tt
and Tv. Consequently we can define the non-vanishing

n= TuXTv=+0.

It follows that n must be on the perpendicular line to
both Tu and Tv. Therefore,

n-Tu= n-Tv=0.
We can also take a transpose and write,
u-T'n=v-T'n=0

Showing that the vector T n is perpendicular to both u
and v. It follows that 3 a €R such that

T'n = a(u X v)
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Cofactor Transformation

.‘
Therefore, TT(Tu X Tv) = a(u X v).

Let w = u X vso that u,vand w are linearly independent,
then we can take a scalar product of the above equation
and obtain,
w-TT(TuXxTv) =a(uXv-w)
The LHSisalso Tw - (Tu X Tv) = Tu X Tv - Tw. In the
equation, Tu X Tv: Tw = a(u X v-w), itis clear that
a =detT

We therefore have that, Tu X Tv = T Tdet T (u X v).
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Cofactor Tensor

e therefore have that,
Tux Tv =T TdetT (uxv). T
This quantity, T~ T det T is the cofactor of T. If we write,
cofacT=T =T TdetT
we can see that the cofactor satisfies, Tu X Tv = T(u X v)
We now express the cofactor in its general components.

TC = (TC)“ga Kg =(g* Tgg, Vg

=5 El]k g% T(g/ xg")|g, ® g

1 | |
= 2 €jk[8* - (Tg’) x (Tg")|g. ® g
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Cofactor Components

The scalar in brackets,
g* - (Tg’) x (Tg") = g* - €""(gm - Te!)(gn - TE")8:
= 6™ (gm - Tg')(8n - T8")
= §felmnT) Tk = eamnT) Tk
Inserting this above, we therefore have, in invariant

component form,

1 | |
T¢ =~ eune|g” - (Tg') x (Tg")|g. ® &'

1 amnpJ Tk i
= Eeijke ThTh8a X8

1 , .
=5 ST Tig @ g

Tuesday, April 7, 2015
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Trace of the Cofactor

For any invertible tensor, show that the trace of the cofactor
is the second principal invariant of the original tensor: [, (T)

= 1,(T)
1 . .
tr(T®) = =6/ T) Tkg, - g = I,(T)

2 ljk
1 ImnmJ pk i 1 imnmJ mk
=505k TmTn 01 =70k T T

1 . 1., . .
— ]k — Jrk Jk
= E&})"(S}Q — o8] )Tk = = (1T = T/T)
— 12 T
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Determinants

Show that the de rod
of the determinants g

C=AB = C/ = AL,B"
so that the determinant of C in component form is,
eVkClCPCY = €Y*A[B{ A%, B A3 B}
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The inverse of tensorS,\
51 = (dets)-1 (s
let the scalar a = detS. We can see clearly that,
St =asST
Taking the determinant of this equation, we have,
det(S¢) = a®det(S7T) = a3 det(S™1)
as the transpose operation has no effect on the value of a

determinant. Noting that the determinant of an inverse is

the inverse of the determinant, we have,
3

a
det(S¢) = a®det(S™1) = — = (det S)?
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‘\

Show that (aS)¢ = a?S*
Ans
(a$)¢ = (det(a$))(aS)™T = (a3 det(S))a~1s7T
= (a?det(S))S™T = a?s¢
Show that (§™1)¢ = (detS)~ 18T

Ans.
(SHC = det(SH ST = (dets) 18T

oafak@unilag.edu.ng 78 Tuesday, April 7, 2015




Consequently,
(57" = (det$)"1(ST) " = (detS)" 18T
(e) Show that (S€)° = (detS)S
Ans.
SC =det(S)ST

So that,

(59)° = (detsC)(s¢) " = (dets)? [(s¢) 7]

= (det $)2[(detS)"1ST]" = (detS)2(detS)~S = (detS)S
as required.
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3. Show that for any invertible tensor S an! any vector u, “

[(Su) X] = SC(ux)s1
where §¢ and §71 are the cofactor and inverse of S respectively.
By definition,
SC = (detS)ST
We are to prove that,
[(Su) x] = SC(ux)S™! = (detS)S T(ux)s™?!
or that,
ST[(Su) x] = (u x)(det §)$~1 = (u x)(5€)"
On the RHS, the contravariant ij component of u X is
(u x)V = ey,

which is exactly the same as writing, (u X) = €'* u,g; ® g, in the invariant form.
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e

Similarly, (SC)_kj'gk Rgl = %e“nejﬁ},SfS];gk ® g’ so that its transpose (SC)T =

z ek’lnejBySﬁSygj X gi- We may therefore write,

| x)(5°) ] ey e Me;p, SUSTE @ 81 8 @ g
i

— 2 lal51ua klnejﬁySBS%/gi R 8

1 .

= Eeﬂ“ejﬁyuaekl”SfS%/gi X 8k
1 . .

= 5 €M (8455 — 615 ) waSL Sy @ g
1 . .

= Eek)‘n luijS,],/ — uﬁS;LﬁSrl;] g8 ® 8k

2
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I

We now turn to the LHS;
[(Sw) x] = '™ (Sw) o) ® gi = €“*Sju8: ® g
Now, S = S%8; ® gF so thatits transpose, ST = Spgf ® g; = sPgl ® g so that
ST[(Sw) x] = El“ksiﬁséujgi X gp- 81 X 8k
= ElakSiZSéu]'gl ® 8k
= e'**S{Su8; ® g
= e“Pku;SiS)eg, ® gy = (ux)(SC) .
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2 “jab

1
(8%u), = (5 up = 7 €janePLupSESh

Consequently,

1 ..
[(5%u) x] = - €V ejapel tupSESie: @ gr

1 ) )

= Eeﬂcd(ags,g — 6584 )ugSESgi @ gk
1 . . :

= 5 ePClup(SESy — SiS4)8: ® gic = €P°MupSESyg: ® g

On the RHS, (u x)ST = €*FYuzSkg, ® gi. We can therefore write,
S(ux)ST = e*PrugSiSke; @ gy =

Which on a closer look is exactly the same as the LHS so that,

|($€u) x| = S(u x)ST

as required.
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QuX Qv=(wX u) X (w X v) =(w X u)m
=[(wXx u) -vViw—[(wx u) - wlv=[w- (UXVv)]w

= (w @ w)(ux v)

But by definition, the cofactor must satisfy,

Qux Qv= Q(u x v)

which compared with the previous equation yields the desired result
that

Q¢ = (0w R w).
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S

~—

5. Show that the cofactor of a tensor can be written as

SC=(S2-LS+LI)
even if § is not invertible. I, I, are the first two invariants of §.
Ans.
The above equation can be written more explicitly as,

T
1
sC = (52 —tr(S)S + [E [tr2(S) — tr(SZ)]] 1)
In the invariant component form, this is easily seen to be,
. .1
S¢ = (S,; S — S&Sj + 5(535[5 SE‘Sﬁ) )g’ ® 8i
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e

But we know that the cofactor can be obtained directly from the equation,

DR
1 . 1 .
(s°) =§Elﬁy6jm5§5)’]gi ® g’ =5 5jﬂ 5f 51[; 5;?53& ® g’
14 14 14
-51' 5A 511_
1 [s8 s8] |8 &F |sf s |
- 5l|: A 77“ _ 5l ] n + 6l ] A Sﬂsng. ®g]
J gy 14 Aoy 14 nl oy Y By Bi
2 55 5,7 6]. 6,7 6]. H

_ % |67 (67 6y —s0s)) — 51 (fsy —s85)) + 0} (s/5) — 6L 6))|Sps)ei ®g/

1 si B _ cAgh ' | Tl '
~|6f (sasf —sisy) - 2sisg + 250 5] |gi @ &’
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e

Using the above, Show that the cofactor of a vector cross(u X) isu ® u
(ux)* = (Eiajuagi X gj)(elﬁmuﬁgl X gm)
= e egmuauf (8 ® 8™ = €Yejpnuuf (8 ® 8™ = € Yepmuuf (g @ g™
= (5[;5,‘;‘1 - 5,",16[‘}) uuf(g; ® g™) = (upu' — Shuu*)g Rg"m = u@u— (u-u)l
trf(ux)?’]=u-u—-3u-u=—-2u-u
trf(ux)] =0

But from previous result,

T
(u x)€ = ((u x)% — (u x)tr(u x) + %[trz(u X) — tr((u x)z)]] 1)

T
=<u®u—(u-u)1—0+E[O+2u-u]]1)

=uUuQu—(u-uwl-0+[(u- w7
=u@u
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I

Show that (u @ u)¢ = 0
In component form,

u@u=uuyg; g
So that
(u@u)? = (g @ g/)(u'umg ® g™) = uiyu'ung; @ ™6,
=u'ujuwu,g ®g" = U@ uw)(u-u)
Clearly,
trllu @ W] = u-u, tr*[(u @ w)] = (u - u)?

andtrlu @ w)?] = (u-w?*w R u)¢ = <(u RQu)?—(u@utr(u @ u) +
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Orthogonal Tensors

\

Given a Euclidean Vector Space E, a tensor Q is said to
be orthogonal if, Va,b € T ;

(Qa) - (@Qb) =a-b
Specifically, we can allow a = b, so that
(Qa)-(Qa) =a-a
Or
|Qall = ||all
In which case the mapping leaves the magnitude
unaltered.
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Orthogonal Tensors

\’

Let ¢ = Qa
(Qa) - (@b) =q-Qb=a-b=b-a
By definition of the transpose, we have that,
q-Qb=b-Q'q=b-Q"Qa=b-a
ClearlyQ’Q =1
A condition necessary and sufficient for a ten@aio be

orthogonal is thatQ be invertible and its inverse equal to
Its transpose.
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Orthogonal
.‘

Upon noting that the determinant of a product is the
product of the determinants and that transposition
does not alter a determinant, it is easy to conclude that,

det (QTQ) = (det QT)(det Q) = (det @)% =1

Which clearly shows that
(detQ) = *1

When the determinant of an orthogonal tensor is
strictly positive, it is called “proper orthogona?’.
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Rotation & Reflection

L

A rotation is a proper orthogonal tensor while a
reflection is not.
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Rotation

* Let Q be a rotation. ANV D3 ractors u. v show t
Q(u xv) = (Qu) X (Qv) ——_

This question is the same as showing that the cofactor of Q

is Q itself. That is that a rotation is self cofactor. We can write
that

T(uxv) = (Qu) x (Qv)

where
T = cof(Q) = det(Q) QT
Now that Q is a rotation, det(Q) = 1, and
0eT=@ N =@ =0
This implies that T = Q and consequently,
Q(u xv) = (Qu) x (Qv)
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or any invertible tensor,
SC¢ = (detS)S™T —

For a proper orthogonal tensor Q, det @ = 1. It therefore
follows that,

Q°=(det@)Q"'=0Q""=¢@
It is easily shown that trQ®¢ = I,(Q) (HW Show this Romano 26)

Characteristic equation for Q is,
det ((Q — A1) = A3 — 22Q; + 1Q, — Q3 =0
Or,
A3 =220, + 10, —1=0
Which is obviously satisfied by 4 = 1.
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N

If for an arbitrary unit vector e, the tensor, Q(6) = cos (8)I + (1 — cos (0))e ®
e + sin (6) (e X) where (e X) is the skew tensor whose ij component is €;;, ey,

show that Q(8)(I —e @ e) = cos (B)(I — e Q e) + sin (8) (e X).
Q0)(e®e)= cos(A)(e®e)+ (1 —cos(B))e®e+sin(0)[ex (e e)]

The last term vanishes immediately on account of the fact that e ® e is a
symmetric tensor. We therefore have,

QA)(e®e)=cos(A)(e®e)+(1—cos(@)e®Re=¢eRe
which again mean that Q(8) so that
Q) —e®e) =cos(O)I+ (1 — COS (9))e Xe+sin(@)(ex)—eQRe
=cos(0)(I —e ® e) + sin (6)(e x)
as required.
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e + sin (8) (e x) wher

Show for an arbitrary vector u that v =

Given an arbitrary vector u, compute the vector v = Q(8)u. Clearly,
v =—cos(@)u+ (1 —cos(0))(u-e)e + sin(f)(e x u)

The square of the magnitude of v is

v-v=|v|?
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It is convenient to write Q(a) and Q(p) in terms

[@(a)];; = (co

Consequently, we can write, \

[Q(@e®]ij = [Q(@)]ul@(B)]kj =
[(cos @)b; + (1 — cos a)e;ey, — (sin @) eiklel][(cos B)8kj + (1 — cosB)ege; — (sin ) Ekjmem]

= (cos a cos ) 6y Oyj + cos a(1 — cos f)J;ierej — cos asin f§ € jmemSi + cos f(1 — cosa)dyje;e, + (1 — cosa)(1 — cos e exeye;
— (1 = cosa)e;ey (sin f) €y jmen — (sina cos ) €0 — (sina)(1 — cos Beye; € e; + (sinasin ) € €xjmeiem

= (cosa cos ) §;; + cosa(l — cos B)e;e; — cosa sin 8 €;jmey, + cos f(1 — cos a)e;e; + (1 — cos @) (1 — cos f)e;e; — (sina cos ) €,
+ (sinasinB) (6,j6im — SumSji)erem

= (cosa cos f — sinasin ) &;; + [1 — (cos acos B — sin a sin ) ]e;e; — [cos a sin f — sin a cos Ble;jmen

= [Q(a + B)];;
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e

Use the results of 52 and 55 above to show that the tensor Q(8) = cos (0)I + (1 —
cos (0))e ® e + sin (0)(e X) is periodic with a period of 2.

From 55 we can write that Q(a + 2m) = Q(a)Q(2m). But from 52, Q(0) =
Q(2m) = I. We therefore have that,

Q(a +2m) = Q(@)Q(21) = Q(a)

which completes the proof. The above results show that Q(«) is a rotation along
the unit vector e through an angle «.
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N

Define Lin™as the set of all tensors with a positive determinant. Show that Lin*is
invariant under G where is the proper orthogonal group of all rotations, in the
sense that for any tensor A € Lint Q € G = QAQT € Lin™ .(G285)

Since we are given that A € Lin™, the determinant of A is positive. Consider

det (QAQT). We observe the fact that the determinant of a product of tensors is
the product of their determinants (proved above). We see clearly that,

det(QAQT) = det(Q) x det(A) X det(QT). Since Q is a rotation, det(Q) =
det(QT) = 1. Consequently we see that,
det(QAQT) = det(Q) X det(A) x det(QT)
= det(QAQT)
=1 xdet(A) X 1
= det(A)

Hence the determinant of QAQT is also positive and therefore QAQT € Lin* .
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N

Define Sym as the set of all symmetric tensors. Show that Sym is invariant under G
where is the proper orthogonal group of all rotations, in the sense that for any
tensor A € Sym every Q € G = QAQT € Sym. (G285)

Since we are given that A € Sym, we inspect the tensor QAQT. Its transpose is,

(QAQT)" = (QT) AQT = QAQT. So that QAQT is symmetric and therefore
QAQT € Sym. so that the transformation is invariant.
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Eigenvalue Problem and its consequen

—

A These issues lead to the mathematical representation of such

physical properties as Principal stresses, Principal strains,
Principal stretches, Principal planes, Natural frequencies, Normal
modes, Characteristic values, resonance, equivalent stresses,
theories of yielding, failure analyses, Von Mises stresses, etc.

A As we can see, these seeming unrelated issues are all centered

around the eigenvalue problem of tensors. Symmetry groups,
and many other constructs that simplify analyses cannot be
understood outside a thorough understanding of the eigenvalue
problem.

A At this stage of our study of Tensor Algebra, we shall go through

a simplified study of the eigenvalue problem. This study will
reward any diligent effort. The converse is also true. A superficial
understanding of the Eigenvalue problem will cost you dearly.
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The Eigenvalue Problem

\’

Recall that a tensor T is a linear transformation for u €
e

T:-e -—e
statesthata w € e such that,
Tu=T(u) =w
Generally, u and its image, w are independent vectors
for an arbitrary tensor T. The eigenvalue problem

considers the special case when there is a linear
dependence between u and w.
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Eigenvalue Problem

\’

Here theimage w = Auwhere A € a
Tu = Au
The vector u, if it can be found, that satisfies the above

equation, is called an eigenvector while the scalar A4 is its
corresponding eigenvalue.

The eigenvalue problem examines the existence of the
eigenvalue and the corresponding eigenvector as well
as their consequences.
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In order to obtain such solutions, it is useful to write ou
this equation in its component form:

Tiu'g; = Au'g;
so that,
i iV o, —
(T} — 26} )u/g; =0
the zero vector. Each component must vanish
identically so that we can write

(T} =26/ )w/ =0
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From the fundamental law of algebra, the
equations can only be possible for arbitrary values of u/
if the determinant,

T} — 25/
Vanishes identically. Which, when written out in full,
yields,
Tt -1 T} T3

T¢ Tf—2 Tz [=0
T? T; T3 —2
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~T3TETE + T T5T;
+nnn+ﬂmm nﬂ%+ﬁﬁu+ﬂﬁl
—T{T3A=TT3A+T{ A2 + TS 22+ T35 =23 =0
_ _TITIT? + TITZT? + TITTS — TATZTS — TITZTS
+ T{T5T3

+ (TITE = T{TE + TITE + TET; — T{T5 — TET5)A
+(TE+ T2+ T2 -23 =0

or

B L2+ 1LA—1;=0
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Principal Invariants Again
\‘

* This is the characteristic equation for the tensor T.
From here we are able, in the best cases, to find the
three eigenvalues. Each of these can be used in to
obtain the corresponding eigenvector.

* The above coefficients are the same invariants we
have seen earlier!
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Positive Definite Tensors

\

A tensor T is Positive Definite if forallu € e ,
u-Tu>70

It is easy to show that the eigenvalues of a symmetric,
positive definite tensor are all greater than zero. (HW:
Show this, and its converse that if the eigenvalues are
greater than zero, the tensor is symmetric and positive
definite. Hint, use the spectral decomposition.)
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Cayley- Hamilton Theorem

* We now state without proof (See Dill for proof) the
important CaleyHamilton theorem: Every tensor
satisfies its own characteristic equation. That is, the
characteristic equation not only applies to the
eigenvalues but must be satisfied by the tensor T
itself. This means,

TS -LT°+LT—-131=0
is also valid.

* This fact is used in continuum mechanics to obtain the
spectral decompositiorof important material and
spatial tensors.
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Spectral Decomposition

corresponding eigenvectors are orthogonal. It is
therefore possible to create a basis for the tensor with an
orthonormal system based on the normalized
eigenvectors. This leads to what is called a spectral
decompositionof a symmetric tensor in terms of a
coordinate system formed by its eigenvectors:

3
T = 2 Ai ni®ni
=1

Where n; is the normalized eigenvector corresponding to
the eigenvalue 4;.
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Multiplicity of Roots
.‘

The above spectral decomposition is a special case
where the eigenbasis forms an Orthonormal Basis.
Clearly, all symmetric tensors are diagonalizable.

Multiplicity of roots, when it occurs robs this
representation of its uniqueness because two or
more coefficients of the eigenbasis are now the same.

The uniqueness is recoverable by the ingenious
device of eigenprojection.
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Eigenprojectors

\

Case 1: All Roots equal.

* The three orthonormal eigenvectors in an ONB
obviously constitutes an Identity tensor 1. The unique
spectral representation therefore becomes

3 3
T = ZAL ni®ni = }{Z ﬂi®ﬂi
i=1 =1

since A; = A, = A3 = Ain this case.
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Eigenprojectors

‘\

Case 2: Two Roots equal: A4;unique while A, = A5

In this case,
T=24n,®n; +1,(1 —n;®n,)
since A, = A3 in this case.
The eigenspace of the tensor is made up of the projectors:
P, =n,;®n,

and
PZ — 1 — n1®n1
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Eigenprojectors
\‘

The eigen projectors in all cases are based on the
normalized eigenvectors of the tensor. They constitute

the eigenspace even in the case of repeated roots. They
can be easily shown to be:

1. ldempotent: P; P; = P; (no sums)
2. Orthogonal: P; P; = O (the anihilator)
3. Complete:}); P; = 1 (theidentity)
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Tensor Functions

* For symmetric tensors (with real €
consequently, a defined spectral formin all cases),
the tensor equivalent of real functions can easily be
defined:

* Trancendental as well as other functions of tensors

are defined by the following maps:
F:b©b b O]

Maps a symmetric tensor into a symmetric tensor. The
latter is the spectral form such that,

3
F(T) =) f()n®n,
=1
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Tensor functions

\

* Where f(4;) is the relevant real function of the ith
eigenvalue of the tensorT.

* Whenever the tensor is symmetric, for any map,
f:a »a; 3IF-bOH b O]

As defined above. The tensor function is defined
uniquely through its spectral representation.
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tr?(QSQT) — tr
12(S) — tr(QS?QT)
12(5) — tr(QTQS?)

12(S) — tr(8?%)] = I,(S)

I5(QSQT) = det(QSQT)
= det(QTQS)
= det(S) = I5(S)

Hence I, (QSQT) = I, (S), k=1,2,0r3

N =N =N =D
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= 2[12(S) — u(?)

So that,
tr(8?%) = I£(S) — 21,(S)
By the Cayley-Hamilton theorem,
S3—-1,8°+LS—-151=0
Taking a trace of the above equation, we can write that,
tr($% — 1,8? + ,S — I31) = tr(8%) — L;tr(82) + L,tr(§) — 313 =0
so that,
tr(8%) = L,(S)tr(5?) — L(S)tr(S) + 315(S)

= 1,(8) (12($) — 215(8) ) — L,(S)1,(S) + 315(S)
= I (8) — 31 15(S) + 315(S)
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By the Cayley-Hamilton theorem,
U3 -LU*+LU—-LIkI=0

which contracted with U gives,

U* - LU+ LU?-LU=0

~—

so that,
U*=1U°-LU?+ LU
and
tr(U*) = Ltr(U?) — Ltr(U?) + I;tr(U)

= L) (B W) - 3LW)L,U) + 315(V))

- LW) (BW) - 21,(0)) + L(W) 15 (V)
= I} (U) - 4112“{212((]) + 41, (U)13(U)
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=5 [r?(U?) M.

_ %[(112(0) _ 212(U))2 _ tr(U4)]

I (U) — 4 (WL (U) |+ 41F(U)

|
N[ =
—
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