
1. For any tensor 𝐒, show that, 𝐒𝐠𝛼 ⊗𝐠𝛼 = 𝐒

2. Gurtin 2.6.1

3. Show that that if the tensor 𝐓 is invertible, for any vector 𝐤, 𝐓𝐤 = 𝐨
automatically means that 𝐤 = 𝐨.

4. Show that if the vectors 𝐮, 𝐯 and 𝐰 are independent and 𝐓 is invertible, 
then the vectors 𝐓𝐮, 𝐓𝐯 and 𝐓𝐰 are also independent.

5. Show that 𝐰× 𝐰⊗𝐰 = 𝟎 and that 𝐰× 𝐰× = 𝐰⊗𝐰− 𝐰 2𝟏

6. Gurtin 2.8.5

7. Gurtin 2.9.1

8. Gurtin 2.9.2

9. Gurtin 2.9.4

Due April 14, 2015
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Homework 2.1



11. Gurtin 2.11.1 d&e
12. Gurtin 2.11.3
13. Gurtin 2.11.4
14. Gurtin 2.11.5
15. Let 𝐐 be a rotation. For any pair of independent vectors 𝐮, 𝐯 show that

𝐐 𝐮 × 𝐯 = (𝐐𝐮) × (𝐐𝐯)
16. For a proper orthogonal tensor 𝐐, show that the eigenvalue equation 

always yields an eigenvalue of +1.
17. For an arbitrary unit vector 𝐞, the tensor, 𝐐 𝜃 = cos 𝜃 𝟏 + (𝟏 −

cos 𝜃 )𝐞⊗ 𝐞 + sin 𝜃 (𝐞 ×) where (𝐞 ×) is the skew tensor whose 𝑖𝑗
component is 𝜖𝑗𝑖𝑘𝑒𝑘, show that 𝐐 𝜃 (𝟏 − 𝐞⊗ 𝐞) = cos 𝜽 (𝟏 − 𝐞⊗
𝐞) + sin 𝜃 (𝐞 ×).

18. For an arbitrary unit vector 𝐞 and the tensor, 𝐐 𝜃 defined as above, 
Show for an arbitrary vector 𝐮 that 𝐯 = 𝐐 𝜃 𝐮 has the same 
magnitude as 𝐮.

Due April 21 2015
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Homework 2.2



1. Gurtin 2.13.1

2. If the reciprocal relationship, 𝐠𝑖 ⋅ 𝐠
𝑗 = 𝛿𝑖

𝑗
is satisfied, 

what relationship is there between the tensor bases (1) 
𝐠𝑖 ⊗𝐠𝑗 and 𝐠𝛼 ⊗𝐠𝛽, and (2) 𝐠𝑖 ⊗𝐠𝑗 and 𝐠𝛼 ⊗𝐠𝛽?

3. Gurtin 2.14.1
4. Gurtin 2.14.2
5. Gurtin 2.14.3
6. Gurtin 2.14.4
7. Gurtin 2.14.5
8. Gurtin 2.15 1-3a, 3b, 3c
9. Gurtin 2.16 1-8
Due April 28, 2015
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Homework 2.3



For a given a tensor 𝐓 and its transpose 𝐓T, Write out 
expressions for the 

1. Symmetric Part

2. Skew Part

3. Spherical Part

4. Deviatoric Part.

What is the magnitude of 𝐓?
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Tensor Algebra
Tensors as Linear Mappings



No Topics From Slide Date

0 Home Work & Due dates & Quiz 1

1 Definitions, Special Tensors 7 7 Apr

2 Scalar Functions or Invariants 17

3 Inner Product, Euclidean Tensors 26

4 The Tensor Product 29

5
Tensor Basis & Component 
Representation 40

6 The Vector Cross, Axial Vectors 60 14 Apr

7 The Cofactor 68

8 Orthogonal Tensors 88

9
Eigenvalue Problem, Spectral 
Decomposition & Cayley Hamilton 100 21 Apr
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A second Order Tensor 𝑻 is a linear mapping from a 
vector space to itself. Given 𝒖 ∈e the mapping,

𝑻: e →e
states that ∃ 𝒘 ∈e such that,

𝑻 𝒖 = 𝒘.

Every other definition of a second order tensor can be 
derived from this simple definition. The tensor 
character of an object can be established by observing 
its action on a vector.

Second Order Tensor
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*The mapping is linear. This means that if we have two 
runs of the process, we first input 𝒖 and later input 𝐯.
The outcomes 𝑻(𝒖) and 𝑻(𝐯), added would have 
been the same as if we had added the inputs 𝒖 and 
𝐯 first and supplied the sum of the vectors as input. 
More compactly, this means,

𝑻 𝒖 + 𝐯 = 𝑻(𝒖) + 𝑻(𝐯)

Linearity
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Linearity further means that, for any scalar 𝛼 and tensor 𝑻
𝑻 𝛼𝒖 = 𝛼𝑻 𝒖

The two properties can be added so that, given 𝛼, 𝛽 ∈a, and 
𝒖, 𝐯 ∈e, then

𝑻 𝛼𝒖 + 𝛽𝐯 = 𝛼𝑻 𝒖 + 𝛽𝑻 𝐯

Since we can think of a tensor as a process that takes an 
input and produces an output, two tensors are equal only if 
they produce the same outputs when supplied with the same 
input. The sum of two tensors is the tensor that will give an 
output which will be the sum of the outputs of the two 
tensors when each is given that input. 

Linearity
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In general, 𝛼, 𝛽 ∈a ,𝒖, 𝐯 ∈e and 𝑺, 𝑻 ∈c
𝛼𝑺𝒖 + 𝛽𝑻𝒖 = (𝛼𝑺 + 𝛽𝑻)𝒖

With the definition above, the set of tensors constitute 
a vector space with its rules of addition and 
multiplication by a scalar. It will become obvious later 
that it also constitutes a Euclidean vector space with its 
own rule of the inner product.

Vector Space

Tuesday, April 7, 2015oafak@unilag.edu.ng 10



Notation. 

It is customary to write the tensor mapping without the 
parentheses. Hence, we can write,

𝑻𝒖 ≡ 𝑻(𝒖)

For the mapping by the tensor 𝑻 on the vector variable 
and dispense with the parentheses unless when 
needed.

Special Tensors
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The annihilator 𝑶 is defined as the tensor that maps all 
vectors to the zero vector, 𝒐: 

𝑶𝑢 = 𝒐, ∀𝒖 ∈e

Zero Tensor or Annihilator
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The identity tensor 𝟏 is the tensor that leaves every 
vector unaltered. ∀𝒖 ∈e ,

𝟏𝒖 = 𝒖

Furthermore, ∀𝛼 ∈a , the tensor, 𝛼𝟏 is called a 
spherical tensor.

The identity tensor induces the concept of an inverse of 
a tensor. Given the fact that if 𝑻 ∈cand 𝒖 ∈e,  the 
mapping 𝒘 ≡ 𝑻𝒖 produces a vector.
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Consider a linear mapping that, operating on 𝒘, 
produces our original argument, 𝒖, if we can find it:

𝒀𝒘 = 𝒖

As a linear mapping, operating on a vector, clearly, 𝒀 is a 
tensor. It is called the inverse of 𝑻 because,

𝒀𝒘 = 𝒀𝑻𝒖 = 𝒖

So that the composition 𝒀𝑻 = 𝟏, the identity mapping. 
For this reason, we write,

𝒀 = 𝑻−1

The Inverse
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It is easy to show that if 𝒀𝑻 = 𝟏, then 𝑻𝒀 = 𝒀𝑻 = 𝟏.

*HW: Show this.

The set of invertible sets is closed under composition. It 
is also closed under inversion. It forms a group with the 
ÉÄÅÎÔÉÔÙ ÔÅÎÓÏÒ ÁÓ ÔÈÅ ÇÒÏÕÐȭÓ ÎÅÕÔÒÁÌ ÅÌÅÍÅÎÔ

Inverse
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Given 𝒘, 𝐯 ∈e,  The tensor 𝑨T satisfying 

𝒘 ⋅ 𝑨T𝐯 = 𝐯 ⋅ (𝑨𝒘)

Is called the transpose of 𝐴.

A tensor indistinguishable from its transpose is said to 
be symmetric. 

Transposition of Tensors
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There are certain mappings from the space of tensors 
to the real space. Such mappings are called Invariants of 
the Tensor. Three of these, called Principal invariants 
play key roles in the application of tensors to continuum 
mechanics. We shall define them shortly. 

The definition given here is free of any association with 
a coordinate system. It is a good practice to derive any 
other definitions from these fundamental ones:

Invariants
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If we write 
𝐚, 𝐛, 𝐜 ≡ 𝐚 ⋅ 𝐛 × 𝐜

*where 𝐚, 𝐛, and 𝐜 are arbitrary vectors. 

For any second order tensor 𝑻, and linearly 
independent 𝐚, 𝐛, and 𝐜, the linear mapping 𝐼1:c→a

𝐼1 𝑻 ≡ tr 𝑻 =
𝑻𝐚, 𝐛, 𝐜 + 𝐚, 𝑻𝐛, 𝐜 + [𝐚, 𝐛, 𝑻𝐜]

[𝐚, 𝐛, 𝐜]

Is independent of the choice of the basis vectors 𝐚, 𝐛,
and 𝐜. It is called the First Principal Invariant of 𝑻 or 
Trace of 𝑻 ≡ tr 𝑻 ≡ 𝐼1(𝑻)

The Trace
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The trace is a linear mapping. It is easily shown that 
𝛼, 𝛽 ∈a , and 𝑺, 𝑻 ∈c

tr 𝛼𝑺 + 𝛽𝑻 = 𝛼tr 𝑺 + 𝛽tr(𝑻)

HW. Show this by appealing to the linearity of the 
vector space.

While the trace of a tensor is linear, the other two 
principal invariants are nonlinear. WE now proceed to 
define them

The Trace
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The second principal invariant 𝐼2 𝑺 is related to the 
trace. In fact, you may come across books that define it 
so. However, the most common definition is that

𝐼2 𝑺 =
1

2
𝐼1
2 𝑺 − 𝐼1(𝑺

2)

Independently of the trace, we can also define the 
second principal invariant as,

Square of the trace
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The Second Principal Invariant, 𝐼2 𝑻 , using the same 
notation as above is

𝑻𝒂 , 𝑻𝒃 , 𝒄 + 𝒂, 𝑻𝒃 , 𝑻𝒄 + 𝑻𝒂 , 𝒃, 𝑻𝒄

𝒂, 𝒃, 𝒄

=
1

2
tr2 𝑻 − tr 𝑻2

that is half the square of trace minus the trace of the 
square of 𝑻 which is the second principal invariant. 

*This quantity remains unchanged for any arbitrary 
selection of basis vectors 𝒂, 𝒃 and 𝒄.

Second Principal Invariant
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The third mapping from tensors to the real space 
underlying the tensor is the determinant of the tensor. 
While you may be familiar with that operation and can 
easily extract a determinant from a matrix, it is 
important to understand the definition for a tensor that 
is independent of the component expression. The latter 
remains relevant even when we have not expressed the 
tensor in terms of its components in a particular 
coordinate system.

The Determinant
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As before, For any second order tensor 𝑻, and any 
linearly independent vectors 𝐚, 𝐛, and 𝐜, 

*The determinant of the tensor 𝑻, 

det 𝑻 =
𝑻𝒂 , 𝑻𝒃 , 𝑻𝒄

𝒂, 𝒃, 𝒄

(In the special case when the basis vectors are 
orthonormal, the denominator is unity)

The Determinant
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*It is good to note that there are other principal 
invariants that can be defined. The ones we defined 
here are the ones you are most likely to find in other 
texts. 

*An invariant is a scalar derived from a tensor that 
remains unchanged in any coordinate system. 
Mathematically, it is a mapping from the tensor space 
to the real space. Or simply a scalar valued function 
of the tensor.

Other Principal Invariants
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*When the trace of a tensor is zero, the tensor is said to be 
traceless. A traceless tensor is also called a deviatoric
tensor.

*Given any tensor 𝐒, A deviatoric tensor may be created 
from 𝐒 by the following process:

𝐒0 ≡ dev 𝐒 ≡ 𝐒 −
1

3
tr 𝐒 𝟏 = 𝐒 − 𝑠𝟏

So that 𝑠 =
1

3
tr 𝐒 ; 𝑠𝟏 is called the spherical part, and 𝐒0 as 

defined here is called the deviatoric part of 𝐒.

Every tensor thus admits the decomposition,
𝐒 = 𝐒0 + 𝑠𝟏

Deviatoric Tensors
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The trace provides a simple way to define the inner 
product of two second-order tensors. Given 𝑺, 𝑻 ∈c
The trace,

tr 𝑺𝑇𝑻 = tr(𝑺𝑻𝑇)

Is a scalar, independent of the coordinate system 
chosen to represent the tensors. This is defined as the 
inner or scalar product of the tensors 𝑺 and 𝑻. That is,

𝑺: 𝑻 ≡ tr 𝑺𝑇𝑻 = tr(𝑺𝑻𝑇)

Inner Product of Tensors
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The trace automatically induces the concept of the 
norm of a vector (This is not the determinant! Note!!) 
The square root of the scalar product of a tensor with 
itself is the norm, magnitude or length of the tensor:

𝑻 = tr(𝑻𝑇𝑻) = 𝑻: 𝑻

Attributes of a Euclidean Space
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Furthermore, the distance between two tensors as well 
as the angle they contain are defined. The scalar 
distance 𝑑(𝑺, 𝑻)between tensors 𝑺 and 𝑻 :

𝑑 𝑺, 𝑻 = 𝑺 − 𝑻 = 𝑻 − 𝑺

And the angle 𝜃(𝑺, 𝑻),

𝜃 = cos−1
𝑺: 𝑻

𝑺 𝑻

Distance and angles
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A product mapping from two vector spaces to c is 
defined as the tensor product. It has the following 
properties:

"⊗":e ×e →c
𝒖⊗ 𝒗 𝒘 = (𝒗 ⋅ 𝒘)𝒖

It is an ordered pair of vectors. It acts on any other 
vector by creating a new vector in the direction of its 
first vector as shown above. This product of two 
vectors is called a tensor product or a  simple dyad.

The Tensor Product
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It is very easily shown that the transposition of dyad is 
simply a reversal of its order. (Shown below).

The tensor product is linear in its two factors.

Based on the obvious fact that for any tensor 𝑻 and 
𝒖, 𝒗,𝒘 ∈e;𝑻 𝒖⊗ 𝒗 𝒘 = 𝑻𝒖 𝒗 ⋅ 𝒘 = 𝑻𝒖 ⊗ 𝒗 𝒘

It is clear that
𝑻 𝒖⊗ 𝒗 = 𝑻𝒖 ⊗ 𝒗

Show this neatly by operating either side on a vector

Furthermore, the contraction, 

𝒖⊗ 𝒗 𝑻 = 𝒖⊗ 𝑻𝑇𝒗

A fact that can be established by operating each side 
on the same vector.

Dyad Properties
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Recall that for 𝒘, 𝐯 ∈e,  The tensor 𝑨T satisfying 

𝒘 ⋅ 𝑨T𝐯 = 𝐯 ⋅ (𝑨𝒘)

Is called the transpose of 𝑨. Now let 𝑨 = 𝒂⊗ 𝒃 a dyad.
𝐯 ⋅ 𝑨𝒘 =

= 𝐯 ⋅ 𝒂⊗ 𝒃 𝒘 = 𝐯 ⋅ 𝒂 𝒃 ⋅ 𝒘
= 𝐯 ⋅ 𝒂 𝒃 ⋅ 𝒘 = 𝒘 ⋅ 𝒃 𝐯 ⋅ 𝒂
= 𝒘 ⋅ 𝒃⊗ 𝒂 𝐯

So that 𝒂⊗ 𝒃 T = 𝒃⊗ 𝒂

Showing that the transpose of a dyad is simply a 
reversal of its factors.

Transpose of a Dyad
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If 𝐧 is the unit normal to a given plane, show that the 
tensor 𝐓 ≡ 𝟏 − 𝐧⊗ 𝐧 is such that 𝐓𝐮 is the projection 
of the vector 𝐮 to the plane in question.

Consider the fact that
𝐓𝐮 = 𝟏𝐮 − 𝐧 ⋅ 𝐮 𝐧 = 𝐮 − 𝐧 ⋅ 𝐮 𝐧

The above vector equation shows that 𝐓𝐮 is what 
remains after we have subtracted the projection 
𝐧 ⋅ 𝐮 𝐧 onto the normal. Obviously, this is the 

projection to the plane itself. 𝐓 as we shall see later is 
called a tensor projector.
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Consider a contravariant vector component 𝑎𝑘 let us take a 
product of this with the Kronecker Delta:

𝛿𝑗
𝑖𝑎𝑘

which gives us a third-order object. Let us now perform a 
contraction across (by taking the superscript index from 𝐴𝑘

and the subscript from 𝛿𝑗
𝑖) to arrive at,

*𝑑𝑖 = 𝛿𝑗
𝑖𝑎𝑗

*Observe that the only free index remaining is the 
superscript 𝑖 as the other indices have been contracted (it 
is consequently a summation index) out in the implied 
summation. Let us now expand the RHS above, we find,

Substitution Operation
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𝑑𝑖 = 𝛿𝑗
𝑖𝑎𝑗 = 𝛿1

𝑖𝑎1 + 𝛿2
𝑖𝑎2 + 𝛿3

𝑖𝑎3

Note the following cases:

*if 𝑖 = 1, we have 𝑑1 = 𝑎1, if 𝑖 = 2, we have 𝑑2 = 𝑎2 if 
𝑖 = 3, we have 𝑑3 = 𝑎3. This leads us to conclude 

therefore that the contraction, 𝛿𝑗
𝑖𝑎𝑗 = 𝑎𝑖. Indicating 

that  that the Kronecker Delta, in a contraction, 
merely substitutes its own other symbol for the 
symbol on the vector 𝑎𝑗 it was contracted with. This 
fact, that the Kronecker Delta does this in general 
earned it the alias of “Substitution Operator”. 

Substitution
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Operate on the vector 𝒛 and let 𝑻𝒛 = 𝒘. On the LHS, 
𝒖⊗ 𝒗 𝑻𝒛 = 𝒖⊗ 𝒗 𝒘

On the RHS, we have:

𝒖⊗ 𝑻𝑇𝒗 𝒛 = 𝒖 𝑻𝑇𝒗 ⋅ 𝒛 = 𝒖 𝒛 ⋅ 𝑻𝑇𝒗

Since the contents of both sides of the dot are vectors 
and dot product of vectors is commutative. Clearly,

𝒖⊗ 𝒛 ⋅ 𝑻𝑇𝒗 = 𝒖⊗ 𝒗 ⋅ 𝑻𝒛

follows from the definition of transposition. Hence,

𝒖⊗ 𝑻𝑇𝒗 𝒛 = 𝒖 𝒗 ⋅ 𝒘 = 𝒖⊗ 𝒗 𝒘

Composition with Tensors
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For 𝒖, 𝒗,𝒘, 𝒙 ∈e;We can show that the dyad 
composition,

𝒖⊗ 𝒗 𝒘⊗ 𝒙 = 𝒖⊗ 𝒙 𝒗 ⋅ 𝒘

Again, the proof is to show that both sides produce the 
same result when they act on the same vector. Let 𝒚 ∈
e, then the LHS on 𝒚 yields:

𝒖⊗ 𝒗 𝒘⊗ 𝒙 𝒚 = 𝒖⊗ 𝒗 𝒘(𝒙 ⋅ 𝒚)
= 𝒖 𝒗 ⋅ 𝒘 (𝒙 ⋅ 𝒚)

Which is obviously the result from the RHS also.

This therefore makes it straightforward to contract 
dyads by breaking and joining as seen above.

Dyad on Dyad Composition
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Show that the trace of the tensor product 𝐮⊗ 𝐯 is 𝐮 ⋅
𝐯.

Given any three independent vectors 𝐚, 𝐛, and 𝐜, (No 
loss of generality in letting the three independent 
vectors be the curvilinear basis vectors 𝐠1, 𝐠2 and 𝐠3). 
Using the above definition of trace, we can write that,

Trace of a Dyad
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tr 𝐮⊗ 𝐯 =
𝐮⊗ 𝐯 𝐠1 , 𝐠2, 𝐠3 + 𝐠1, 𝐮 ⊗ 𝐯 𝐠2 , 𝐠3 + 𝐠1, 𝐠2, 𝐮 ⊗ 𝐯 𝐠3

𝐠1, 𝐠2, 𝐠3

=
1

𝜖123
𝑣1𝐮, 𝐠2, 𝐠3 + 𝐠1, 𝑣2𝐮, 𝐠3 + 𝐠1, 𝐠2, 𝑣3𝐮

=
1

𝜖123
𝑣1𝐮 ⋅ 𝜖23𝑖𝐠

𝑖 + 𝜖31𝑖𝐠
𝑖 ⋅ 𝑣2𝐮 + 𝜖12𝑖𝐠

𝑖 ⋅ 𝑣3𝐮

=
1

𝜖123
𝑣1𝐮 ⋅ 𝜖231𝐠

1 + 𝜖312𝐠
2 ⋅ 𝑣2𝐮 + 𝜖123𝐠

3 ⋅ 𝑣3𝐮 = 𝑣𝑖𝑢
𝑖

Trace of a Dyad
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*It is easy to show that for a tensor product 
𝑫 = 𝒖⊗ 𝒗 ∀𝒖, 𝒗 ∈e

𝑰2 𝑫 = 𝑰3 𝑫 = 0

HW. Show that this is so.

We proved earlier that 𝑰1 𝑫 = 𝒖 ⋅ 𝒗

Furthermore, if 𝑻 ∈c, then,
tr 𝑻𝒖⊗ 𝒗 = tr 𝒘⊗ 𝒗 = 𝒘 ⋅ 𝒗 = 𝑻𝒖 ⋅ 𝒗

Other Invariants of a Dyad
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𝑫 = 𝒖⊗ 𝒗 ∀𝒖, 𝒗 ∈e
Let 𝒂, 𝒃, 𝒄 ∈e be arbitrary, linearly independent vectors. Basis vectors are 
just an example of three such vectors. 

𝑰3 𝑫 =
𝒖⊗ 𝒗 𝒂, 𝒖⊗ 𝒗 𝒃, 𝒖⊗ 𝒗 𝒄

𝒂, 𝒃, 𝒄

=
𝒗 ⋅ 𝒂 𝒖, 𝒗 ⋅ 𝒃 𝒖, 𝒗 ⋅ 𝒄 𝒖

𝒂, 𝒃, 𝒄
= 0

Because the brackets in the numerator contains three parallel vectors so their 
scalar triple product must vanish.
It is equally easy to show that the second invariant id zero. But keep these in 
mind as I will ask you to show they vanish by looking at their components. We 
go now to define the components of a tensor.
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Given 𝑻 ∈c,  for any basis vectors 𝐠𝑖 ∈e , 𝑖 = 1,2,3
𝑻𝑗 ≡ 𝑻𝐠𝑗 ∈e , 𝑗 = 1,2,3

by the law of tensor mapping, 𝑻𝑗 is a vector. We 
proceed to find the components of 𝑻𝑗 on this same 
basis. Its covariant components, just like in any other 
vector are the scalars,

𝑻𝛼 𝑗 = 𝐠𝛼 ⋅ 𝑻𝑗 (write out the nine equations we are representing here).

Specifically, these components are 𝑻1 𝑗 , 𝑻2 𝑗 , 𝑻3 𝑗

Tensor Bases & Component 
Representation
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We can dispense with the parentheses and write that
𝑇𝛼𝑗 ≡ 𝑇𝛼 𝑗 = 𝑻𝑗 ⋅ 𝐠𝛼

So that the vector 
𝑻𝐠𝑗 = 𝑻𝑗 = 𝑇𝛼𝑗𝐠

𝛼

The components 𝑇𝑖𝑗 can be found by taking the dot 

product of the above equation with 𝐠𝑖: 

𝐠𝑖 ⋅ 𝑻𝐠𝑗 = 𝑇𝛼𝑗 𝐠𝑖 ⋅ 𝐠
𝛼 = 𝑇𝑖𝑗

𝑇𝑖𝑗 = 𝐠𝑖 ⋅ 𝑻𝐠𝑗
= tr 𝑻𝐠𝑗 ⊗𝐠𝑖 = 𝑻: 𝐠𝑖 ⊗𝐠𝑗

Tensor Components
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The component 𝑇𝑖𝑗 is simply the result of the inner 

product of the tensor 𝑻 on the tensor product 𝐠𝑖 ⊗𝐠𝑗. 

These are the components of 𝑻 on the product dual of  
this particular product base.

This is a general result and applies to all product bases:

It is straightforward to prove the results on the 
following table:

Tensor Components
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Components of 𝑻 Derivation Full Representation

𝑇𝑖𝑗 𝑻: (𝐠𝑖 ⊗𝐠𝑗) 𝑻 = 𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗

𝑇𝑖𝑗 𝑻: 𝐠𝑖 ⊗𝐠𝑗 𝑻 = 𝑇𝑖𝑗𝐠𝑖 ⊗𝐠𝑗

𝑇𝑖
.𝑗 𝑻: (𝐠𝑖 ⊗𝐠𝑗) 𝑻 = 𝑇𝑖

.𝑗
𝐠𝑖 ⊗𝐠𝑗

𝑇.𝑖
𝑗 𝑻: (𝐠𝑗 ⊗𝐠𝑖) 𝑻 = 𝑇.𝑖

𝑗
𝐠𝑗 ⊗𝐠𝑖

Tensor Components
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Components of 𝟏 Derivation Full Representation

𝟏 𝑖𝑗 = 𝑔𝑖𝑗 𝟏: (𝐠𝑖 ⊗𝐠𝑗) 𝟏 = 𝑔𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗

𝟏 𝑖𝑗 = 𝑔𝑖𝑗 𝟏: 𝐠𝑖 ⊗𝐠𝑗 𝟏 = 𝑔𝑖𝑗𝐠𝑖 ⊗𝐠𝑗

𝟏 𝑖
.𝑗
= 𝛿𝑖

.𝑗 𝟏: (𝐠𝑖 ⊗𝐠𝑗) 𝟏 = 𝛿𝑖
.𝑗
𝐠𝑖 ⊗𝐠𝑗 = 𝐠𝑖 ⊗𝐠𝑖

𝟏 .𝑖
𝑗
= 𝛿 .𝑖

𝑗 𝟏: (𝐠𝑗 ⊗𝐠𝑖) 𝟏 = 𝛿.𝑖
𝑗
𝐠𝑗 ⊗𝐠𝑖 = 𝐠𝑗 ⊗𝐠𝑗

IdentityTensor Components

It is easily verified from the definition of the identity 
tensor and the inner product that: (HW Verify this)

Showing that the Kronecker deltas are the components of the 
identity tensor in certain (not all) coordinate bases.
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*The above table shows the interesting relationship 
between the metric components and Kronecker
deltas.

*Obviously, they are the same tensors under different 
bases vectors.

Kronecker and Metric Tensors
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It is easy to show that the above tables of component 
representations are valid. For any 𝐯 ∈e , and 𝑻 ∈c,

𝑻 − 𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗 𝐯 = 𝑻𝐯 − 𝑇𝑖𝑗 𝐠𝑖 ⊗𝐠𝑗 𝐯

Expanding the vector in  contravariant components, we have,

*𝑻𝐯 − 𝑇𝑖𝑗 𝐠𝑖 ⊗𝐠𝑗 𝐯 = 𝑻𝑣𝛼𝐠𝛼 − 𝑇𝑖𝑗 𝐠𝑖 ⊗𝐠𝑗 𝑣𝛼𝐠𝛼
= 𝑻𝑣𝛼𝐠𝛼 − 𝑇𝑖𝑗𝑣

𝛼𝐠𝑖 𝐠𝑗 ⋅ 𝐠𝛼

= 𝑻𝑣𝛼𝐠𝛼 − 𝑇𝑖𝑗𝑣
𝛼𝐠𝑖𝛿𝛼

𝑗

= 𝑻𝛼 𝑣
𝛼 − 𝑇𝑖𝑗𝑣

𝑗𝐠𝑖 = 𝑻𝛼 𝑣
𝛼 − 𝑻𝑗𝑣

𝑗

= 𝒐

∴ 𝑻 = 𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗

Component Representation
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The transpose of 𝑻 = 𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗 is 𝑻𝑇 = 𝑇𝑖𝑗𝐠

𝑗 ⊗𝐠𝑖. 

If 𝑻 is symmetric, then,

𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗 = 𝑇𝑖𝑗𝐠

𝑗 ⊗𝐠𝑖 = 𝑇𝑗𝑖𝐠
𝑖 ⊗𝐠𝑗

Clearly, in this case, 
𝑇𝑖𝑗 = 𝑇𝑗𝑖

It is straightforward to establish the same for 
contravariant components. This result is impossible to 
establish for mixed tensor components:

Symmetry
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For mixed tensor components,

𝑻 = 𝑇𝑖
.𝑗
𝐠𝑖 ⊗𝐠𝑗

The transpose, 

𝑻T = 𝑇𝑖
.𝑗
𝐠𝑗 ⊗𝐠𝑖= 𝑇𝑗

.𝑖𝐠𝑖 ⊗𝐠𝑗

While symmetry implies that,

𝑻 = 𝑇𝑖
.𝑗
𝐠𝑖 ⊗𝐠𝑗 = 𝑻T = 𝑇𝑗

.𝑖𝐠𝑖 ⊗𝐠𝑗

We are not able to exploit the dummy variables to bring the 
two sides to a common product basis. Hence the symmetry is 
not expressible in terms of their components.

Symmetry
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*A tensor is antisymmetric if its transpose is its negative. In 
product bases that are either covariant or contravariant, 
antisymmetry, like symmetry can be expressed in terms of 
the components:

The transpose of 𝑻 = 𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗 is 𝑻𝑇 = 𝑇𝑖𝑗𝐠

𝑗 ⊗𝐠𝑖. 

If 𝑻 is antisymmetric, then,

𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗 = −𝑇𝑖𝑗𝐠

𝑗 ⊗𝐠𝑖 = −𝑇𝑗𝑖𝐠
𝑖 ⊗𝐠𝑗

Clearly, in this case, 
𝑇𝑖𝑗 = −𝑇𝑗𝑖

It is straightforward to establish the same for contravariant
components. Antisymmetric tensors are also said to be skew-
symmetric.

AntiSymmetry
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For any tensor 𝐓, define the symmetric and skew parts 

sym 𝐓 ≡
1

2
𝐓 + 𝐓T , and skw 𝐓 ≡

1

2
𝐓 − 𝐓T . It is easy 

to show the following:
𝐓 = sym 𝐓 + skw 𝐓

skw sym 𝐓 = sym skw 𝐓 = 0

We can also write that,

sym 𝐓 =
1

2
𝑇𝑖𝑗 + 𝑇𝑗𝑖 𝐠

𝑖 ⊗𝐠𝑗

and 

skw 𝐓 =
1

2
𝑇𝑖𝑗 − 𝑇𝑗𝑖 𝐠

𝑖 ⊗𝐠𝑗

Symmetric & Skew Parts of Tensors
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Composition of tensors in component form follows the 
rule of the composition of dyads. 

𝑻 = 𝑇𝑖𝑗𝐠𝑖 ⊗𝐠𝑗 ,

𝑺 = 𝑆𝑖𝑗 𝐠𝑖 ⊗𝐠𝑗
𝑻𝑺 = 𝑇𝑖𝑗𝐠𝑖 ⊗𝐠𝑗 𝑆𝛼𝛽𝐠𝛼 ⊗𝐠𝛽
= 𝑇𝑖𝑗𝑆𝛼𝛽 𝐠𝑖 ⊗𝐠𝑗 𝐠𝛼 ⊗𝐠𝛽
= 𝑇𝑖𝑗𝑆𝛼𝛽𝐠𝑖 ⊗𝐠𝛽𝑔𝑗𝛼

= 𝑇 .𝑗
𝑖.𝑆𝑗𝛽𝐠𝑖 ⊗𝐠𝛽

= 𝑇 .𝛼
𝑖. 𝑆𝛼𝑗𝐠𝑖 ⊗𝐠𝑗

Composition
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*Addition of two tensors of the same order is the 
addition of their components provided they are 
refereed to the same product basis. 

Addition
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Components 𝑻 + 𝑺

𝑇𝑖𝑗 +𝑆𝑖𝑗 𝑇𝑖𝑗 +𝑆𝑖𝑗 𝐠𝑖 ⊗𝐠𝑗

𝑇𝑖𝑗 + 𝑆𝑖𝑗 𝑇𝑖𝑗 + 𝑆𝑖𝑗 𝐠𝑖 ⊗𝐠𝑗

𝑇𝑖
.𝑗
+ 𝑆𝑖

.𝑗
𝑇𝑖
.𝑗
+ 𝑆𝑖

.𝑗
𝐠𝑖 ⊗𝐠𝑗

𝑇.𝑖
𝑗
+𝑆.𝑖

𝑗
𝑇.𝑖
𝑗
+𝑆.𝑖

𝑗
𝐠𝑗 ⊗𝐠𝑖

Component Addition
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*Invoking the definition of the three principal 
invariants, we now find expressions for these in terms 
of the components of tensors in various product 
bases.

*First note that for 𝑻 = 𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗, the triple product, 

𝑻𝐠1 , 𝐠2, 𝐠3 = 𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗 𝐠1 , 𝐠2, 𝐠3

= 𝑇𝑖𝑗𝐠
𝑖𝛿1

𝑗
, 𝐠2, 𝐠3 = 𝑇𝑖1𝐠

𝑖 ⋅ (𝜖231𝐠
1) = 𝑇𝑖1𝑔

𝑖1𝜖231

*Recall that 𝐠𝑖 × 𝐠𝑗 = 𝜖𝑖𝑗𝑘𝐠
𝑘

Component Representation of 
Invariants
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The Trace of the Tensor 𝑻 = 𝑇𝑖𝑗𝐠
𝑖 ⊗𝐠𝑗

tr 𝑻 =
𝑻𝐠1 , 𝐠2, 𝐠3 + 𝐠1, 𝑻𝐠2 , 𝐠3 + 𝐠1, 𝐠2, 𝑻𝐠3

𝐠1, 𝐠2, 𝐠3

=
𝑇𝑖1𝑔

𝑖1𝜖231 + 𝑇𝑖2𝑔
𝑖2𝜖312 + 𝑇𝑖3𝑔

𝑖3𝜖123
𝜖123

= 𝑇𝑖1𝑔
𝑖1 + 𝑇𝑖2𝑔

𝑖2 + 𝑇𝑖3𝑔
𝑖3 = 𝑇𝑖𝑗𝑔

𝑖𝑗 = 𝑇𝑖
.𝑖

The Trace
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{Proof not very illuminating, Ignorable]

𝑻𝒂 , 𝑻𝒃 , 𝒄 = 𝜖𝑖𝑗𝑘𝑇𝛼
𝑖𝑎𝛼𝑇𝛽

𝑗
𝑏𝛽𝑐𝑘

𝒂, 𝑻𝒃 , 𝑻𝒄 = 𝜖𝑖𝑗𝑘𝑎
𝑖𝑇𝛽

𝑗
𝑏𝛽𝑇𝛾

𝑘𝑐𝛾

𝑻𝒂 , 𝒃, 𝑻𝒄 = 𝜖𝑖𝑗𝑘𝑇𝛼
𝑖𝑎𝛼𝑏𝑗𝑇𝛾

𝑘𝑐𝛾

Changing the roles of dummy variables, we can write,

* 𝑻𝒂 , 𝑻𝒃 , 𝒄 + 𝒂, 𝑻𝒃 , 𝑻𝒄 + 𝑻𝒂 , 𝒃, 𝑻𝒄

= 𝜖𝛼𝛽𝑘𝑇𝑖
𝛼𝑎𝑖𝑇𝑗

𝛽
𝑏𝑗𝑐𝑘 + 𝜖𝑖𝛽𝛾𝑎

𝑖𝑇𝑗
𝛽
𝑏𝑗𝑇𝑘

𝛾
𝑐𝑘 + 𝜖𝛼𝑗𝛾𝑇𝑖

𝛼𝑎𝑖𝑏𝑗𝑇𝑘
𝛾
𝑐𝑘

= 𝑇𝑖
𝛼𝑇𝑗

𝛽
𝜖𝛼𝛽𝑘 + 𝑇𝑗

𝛽
𝑇𝑘
𝛾
𝜖𝑖𝛽𝛾 + 𝑇𝑖

𝛼𝑇𝑘
𝛾
𝜖𝛼𝑗𝛾 𝑎𝑖𝑏𝑗𝑐𝑘

=
1

2
𝑇𝛼
𝛼𝑇𝛽

𝛽
− 𝑇𝛽

𝛼𝑇𝛼
𝛽

𝜖𝑖𝑗𝑘𝑎
𝑖𝑏𝑗𝑐𝑘

Second Invariant
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*The last equality can be verified in the following way. 
Contracting the coefficient

𝑇𝑖
𝛼𝑇𝑗

𝛽
𝜖𝛼𝛽𝑘 + 𝑇𝑗

𝛽
𝑇𝑘
𝛾
𝜖𝑖𝛽𝛾 + 𝑇𝑖

𝛼𝑇𝑘
𝛾
𝜖𝛼𝑗𝛾

with 𝜖𝑖𝑗𝑘

𝜖𝑖𝑗𝑘 𝑇𝑖
𝛼𝑇𝑗

𝛽
𝜖𝛼𝛽𝑘 + 𝑇𝑗

𝛽
𝑇𝑘
𝛾
𝜖𝑖𝛽𝛾 + 𝑇𝑖

𝛼𝑇𝑘
𝛾
𝜖𝛼𝑗𝛾

= 𝛿𝛼
𝑖 𝛿𝛽

𝑗
− 𝛿𝛼

𝑗
𝛿𝛽
𝑖 𝑇𝑖

𝛼𝑇𝑗
𝛽
+ 𝛿𝛽

𝑗
𝛿𝛾
𝑘 − 𝛿𝛾

𝑗
𝛿𝛽
𝑘 𝑇𝑗

𝛽
𝑇𝑘
𝛾

+ 𝛿𝛼
𝑖 𝛿𝛾

𝑘 − 𝛿𝛼
𝑘𝛿𝛾

𝑖 𝑇𝑖
𝛼𝑇𝑘

𝛾

= 𝑇𝛼
𝛼 𝑇𝛽

𝛽
− 𝑇𝛽

𝛼𝑇𝛼
𝛽
+ 𝑇𝛼

𝛼𝑇𝛽
𝛽
− 𝑇𝛽

𝛼𝑇𝛼
𝛽

= 3 𝑇𝛼
𝛼𝑇𝛽

𝛽
− 𝑇𝛽

𝛼𝑇𝛼
𝛽

Second Invariant
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Similarly, contracting 𝜖𝑖𝑗𝑘 with 𝜖𝑖𝑗𝑘, we have,

𝜖𝑖𝑗𝑘𝜖𝑖𝑗𝑘 = 6.

Hence

𝑇𝑖
𝛼𝑇𝑗

𝛽
𝜖𝛼𝛽𝑘 + 𝑇𝑗

𝛽
𝑇𝑘
𝛾
𝜖𝑖𝛽𝛾 + 𝑇𝑖

𝛼𝑇𝑘
𝛾
𝜖𝛼𝑗𝛾 𝑎𝑖𝑏𝑗𝑐𝑘

𝜖𝑖𝑗𝑘𝑎
𝑖𝑏𝑗𝑐𝑘

=
3 𝑇𝛼

𝛼𝑇𝛽
𝛽
− 𝑇𝛽

𝛼𝑇𝛼
𝛽

𝑎𝑖𝑏𝑗𝑐𝑘

6𝑎𝑖𝑏𝑗𝑐𝑘

=
𝑇𝛼
𝛼𝑇𝛽

𝛽
− 𝑇𝛽

𝛼𝑇𝛼
𝛽

𝜖𝑖𝑗𝑘𝑎
𝑖𝑏𝑗𝑐𝑘

2𝜖𝑖𝑗𝑘𝑎
𝑖𝑏𝑗𝑐𝑘

=
1

2
𝑇𝛼
𝛼𝑇𝛽

𝛽
− 𝑇𝛽

𝛼𝑇𝛼
𝛽

*Which is half the difference between square of the trace and the 
trace of the square of tensor 𝑻. 
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𝑻𝒂 , 𝑻𝒃 , 𝑻𝒄 = 𝜖𝑖𝑗𝑘𝑇𝛼
𝑖𝑎𝛼𝑇𝛽

𝑗
𝑏𝛽𝑇𝛾

𝑘𝑐𝛾

= 𝜖𝑖𝑗𝑘𝑇𝛼
𝑖𝑇𝛽

𝑗
𝑇𝛾
𝑘𝑎𝛼𝑏𝛽𝑐𝛾

= 𝜖𝑖𝑗𝑘𝑇1
𝑖𝑇2

𝑗
𝑇3
𝑘𝜖𝛼𝛽𝛾𝑎

𝛼𝑏𝛽𝑐𝛾

= det 𝑻 𝜖𝛼𝛽𝛾𝑎
𝛼𝑏𝛽𝑐𝛾

So that,

𝐼3 𝑻 = det 𝑻 = 𝜖𝑖𝑗𝑘𝑇1
𝑖𝑇2

𝑗
𝑇3
𝑘
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We here establish the equality assumed above that,

𝜖𝑖𝑗𝑘𝑇𝛼
𝑖𝑇𝛽

𝑗
𝑇𝛾
𝑘 = 𝜖𝑖𝑗𝑘𝑇1

𝑖𝑇2
𝑗
𝑇3
𝑘𝜖𝛼𝛽𝛾

We do this by first establishing the fact that the LHS is 
completely antisymmetric in 𝛼, 𝛽 and 𝛾. We first note that 
the indices 𝑖, 𝑗 and 𝑘 are dummy and therefore,

𝜖𝑖𝑗𝑘𝑇𝛼
𝑖𝑇𝛽

𝑗
𝑇𝛾
𝑘 = 𝜖𝑘𝑗𝑖𝑇𝛼

𝑘𝑇𝛽
𝑗
𝑇𝛾
𝑖 = 𝜖𝑘𝑗𝑖𝑇𝛾

𝑖𝑇𝛼
𝑘𝑇𝛽

𝑗
= −𝜖𝑖𝑗𝑘𝑇𝛾

𝑖𝑇𝛽
𝑗
𝑇𝛼
𝑘

Hence we see immediately that a simple swap of 𝛼 and 
𝛾 changes sign just as any other two lower symbols. Also 
note that the both sides take the same values when 𝛼, 𝛽 and 
𝛾 take the values of 1,2 and 3. The swapping of the indices 
𝛼, 𝛽 and 𝛾 makes this value positive or negative in the same 
antisymmetric way. This completes the proof of equality.
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Given a vector 𝒖 = 𝑢𝑖𝐠𝑖, the tensor

𝒖 × ≡ 𝜖𝑖𝛼𝑗𝑢
𝛼𝐠𝑖 ⊗𝐠𝑗

is called a vector cross. The following relation is easily 
established between a the vector cross and its 
associated vector:

∀𝐯 ∈e;𝒖 × 𝐯 = 𝒖 × 𝐯

The vector cross is tracelessand antisymmetric. (HW. 
Show this)

Traceless tensors are also called deviatoricor deviator 
tensors.

The Vector Cross
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*For any antisymmetric tensor 𝛀, ∃𝝎 ∈e;such that
𝛀 = 𝝎 ×

𝝎 which can always be found, is called the axial vector 
to the skew tensor.

It can be proved that 

𝝎 = −
1

2
𝜖𝑖𝑗𝑘Ω𝑗𝑘𝐠𝑖 = −

1

2
𝜖𝑖𝑗𝑘Ω

𝑗𝑘𝐠𝑖

(HW: Prove it by contracting both sides of Ω𝑖𝑗 = 𝜖𝑖𝛼𝑗𝜔
𝛼

with 𝜖𝑖𝑗𝛽while noting that 𝜖𝑖𝑗𝛽𝜖𝑖𝛼𝑗 = 𝛿𝑖𝛼𝑗
𝑖𝑗𝛽

= −2𝛿𝛼
𝛽

)

Axial Vector
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Gurtin 2.8.5 Show that for any two vectors 𝐮 and 𝐯, the inner 

product 𝐮 × : 𝐯 × = 2𝐮 ⋅ 𝐯. Hence show that 𝐮 × = √2 𝐮

𝐮 × = 𝜖𝑖𝑗𝑘𝑢𝑗𝐠𝑖 ⊗𝐠𝑘, 𝐯 × = 𝜖𝑙𝑚𝑛𝑣
𝑚𝐠𝑙 ⊗𝐠𝑛. Hence, 

𝐮 × : 𝐯 × = 𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛𝑢𝑗𝑣
𝑚 𝐠𝑖 ⊗𝐠𝑘 : 𝐠𝑙 ⊗𝐠𝑛

= 𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛𝑢𝑗𝑣
𝑚 𝐠𝑖 ⋅ 𝐠

𝑙 𝐠𝑘 ⋅ 𝐠
𝑛

= 𝜖𝑖𝑗𝑘𝜖𝑙𝑚𝑛𝑢𝑗𝑣
𝑚𝛿𝑖

𝑙𝛿𝑘
𝑛 = 𝜖𝑖𝑗𝑘𝜖𝑖𝑚𝑘𝑢𝑗𝑣

𝑚

= 2𝛿𝑚
𝑗
𝑢𝑗𝑣

𝑚 = 2𝑢𝑗𝑣
𝑗 = 2 𝐮 ⋅ 𝐯

The rest of the result follows by setting 𝐮 = 𝐯

HW. Redo this proof using the contravariant alternating tensor 
components, 𝜖𝑖𝑗𝑘 and 𝜖𝑙𝑚𝑛.
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For vectors 𝐮, 𝐯 and 𝐰, show that 𝐮 × 𝐯 × 𝐰 × =
𝐮⊗ 𝐯 ×𝐰 − 𝐮 ⋅ 𝐯 𝐰 ×.

The tensor 𝐮 × = −𝜖𝑙𝑚𝑛𝑢
𝑛𝐠𝑙 ⊗𝐠𝑚

Similarly, 𝐯 × = −𝜖𝛼𝛽𝛾𝑣𝛾𝐠𝛼 ⊗𝐠𝛽 and 𝐰× = −𝜖𝑖𝑗𝑘𝑤𝑘𝐠𝑖 ⊗

𝐠𝑗. Clearly,

𝐮 × 𝐯 × 𝐰 ×

= −𝜖𝑙𝑚𝑛𝜖
𝛼𝛽𝛾𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘 𝐠𝛼 ⊗𝐠𝛽 𝐠𝑙 ⊗𝐠𝑚 𝐠𝑖 ⊗𝐠𝑗

= −𝜖𝛼𝛽𝛾𝜖𝑙𝑚𝑛𝜖
𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘 𝐠𝛼 ⊗𝐠𝑗 𝛿𝛽

𝑙 𝛿𝑖
𝑚

= −𝜖𝛼𝑙𝛾𝜖𝑙𝑖𝑛𝜖
𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘 𝐠𝛼 ⊗𝐠𝑗

= −𝜖𝑙𝛼𝛾𝜖𝑙𝑛𝑖𝜖
𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘 𝐠𝛼 ⊗𝐠𝑗

= − 𝛿𝑛
𝛼𝛿𝑖

𝛾
− 𝛿𝑖

𝛼𝛿𝑛
𝛾

𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘 𝐠𝛼 ⊗𝐠𝑗
= −𝜖𝑖𝑗𝑘𝑢𝛼𝑣𝑖𝑤𝑘 𝐠𝛼 ⊗𝐠𝑗 + 𝜖𝑖𝑗𝑘𝑢𝛾𝑣𝛾𝑤𝑘 𝐠𝑖 ⊗𝐠𝑗
= 𝐮⊗ 𝐯 ×𝐰 − 𝐮 ⋅ 𝐯 𝐰 ×
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𝑔𝑖𝑗 ≡ 𝐠𝑖 ⋅ 𝐠𝑗 and 𝑔𝑖𝑗 ≡ 𝐠𝑖 ⋅ 𝐠𝑗

These two quantities turn out to be fundamentally 
important to any space that which either of these two 
basis vectors can span. They are called the covariant 
and contravariant metric tensors. They are the 
quantities that metrize the space in the sense that any 
measurement of length, angles areas etc are dependent 
on them. 

Index Raising & Lowering
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Now we start with the fact that the contravariant and 
covariant components of a vector 𝒂, 𝑎𝑗 = 𝒂 ⋅ 𝐠𝑗, 𝑎𝑗 =

𝒂 ⋅ 𝐠𝑗 respectively. We can express the vector 𝒂 with 

respect to the reciprocal basis as
𝒂 = 𝑎𝑖𝐠

𝑖

Consequently, 
𝑎𝑗 = 𝒂 ⋅ 𝐠𝑗 = 𝑎𝑖𝐠

𝑖 ⋅ 𝐠𝑗 = 𝑔𝑖𝑗𝑎𝑖

The effect of 𝑔𝑖𝑗 contracting 𝑔𝑖𝑗 with 𝑎𝑖 is to raise and 
substitute its index. 

Index Raising & Lowering
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With similar arguments, it is easily demonstrated that,

𝑎𝑖 = 𝑔𝑖𝑗𝑎
𝑗

So that 𝑔𝑖𝑗, in a contraction, lowers and substitutes the 

index. This rule is a general one. These two components 
are able to raise or lower indices in tensors of higher 
orders as well. They are called index raising and index 
lowering operators. 

Index Raising & Lowering
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Tensor components such as 𝑎𝑖 and 𝑎𝑗 related through 
the index-raising and index lowering metric tensors as 
we have on the previous slide, are called associated 
vectors. In higher order quantities, they are associated 
tensors. 

*Note that associated tensors, so called, are mere 
tensor components of the same tensor in different 
bases.

Associated Tensors
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We will define the cofactor of a tensor 𝐓 as,
cofac 𝐓 ≡ 𝐓c ≡ 𝐓−𝐓 det 𝐓

and proceed to show that, for any pair of independent 
vectors 𝐮 and 𝐯 the cofactor satisfies, 

𝐓𝐮 × 𝐓𝐯 = 𝐓c 𝐮 × 𝐯

We will further find an invariant component 
representation for the cofactor tensor. Lastly, in this 
section, we will find an important relationship between 
the trace of the cofactor and second invariant of the 
tensor itself: tr 𝐓c = 𝐼2 𝐓

Cofactor Definition
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First note that if 𝐓 is invertible, the independence of the 
vectors 𝐮 and 𝐯 implies the independence of vectors 𝐓𝐮
and 𝐓𝐯. Consequently we can define the non-vanishing

𝐧 ≡ 𝐓𝐮 × 𝐓𝐯 ≠ 0.

It follows that 𝐧 must be on the perpendicular line to 
both 𝐓𝐮 and 𝐓𝐯. Therefore,

𝐧 ⋅ 𝐓𝐮 = 𝐧 ⋅ 𝐓𝐯 = 0.

We can also take a transpose and write,
𝐮 ⋅ 𝐓T𝐧 = 𝐯 ⋅ 𝐓T𝐧 = 0

Showing that the vector 𝐓T𝐧 is perpendicular to both 𝐮
and 𝐯. It follows that ∃ 𝛼 ∈R such that 

𝐓T𝐧 = 𝛼 𝐮 × 𝐯

Transformed Basis
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Therefore, 𝐓T 𝐓𝐮 × 𝐓𝐯 = 𝛼 𝐮 × 𝐯 .

Let 𝐰 = 𝐮 × 𝐯 so that 𝐮, 𝐯 and 𝐰 are linearly independent, 
then we can take a scalar product of the above equation 
and obtain,

𝐰 ⋅ 𝐓T 𝐓𝐮 × 𝐓𝐯 = 𝛼 𝐮 × 𝐯 ⋅ 𝐰

The LHS is also 𝐓𝐰 ⋅ 𝐓𝐮 × 𝐓𝐯 = 𝐓𝐮 × 𝐓𝐯 ⋅ 𝐓𝐰. In the 
equation, 𝐓𝐮 × 𝐓𝐯 ⋅ 𝐓𝐰 = 𝛼 𝐮 × 𝐯 ⋅ 𝐰 , it is clear that 

𝛼 = det 𝐓

We therefore have that, 𝐓𝐮 × 𝐓𝐯 = 𝐓−T det 𝐓 𝐮 × 𝐯 .

Cofactor Transformation
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We therefore have that,
𝐓𝐮 × 𝐓𝐯 = 𝐓−T det 𝐓 𝐮 × 𝐯 .

This quantity, 𝐓−𝐓 det 𝐓 is the cofactor of 𝐓. If we write,
cofac 𝐓 ≡ 𝐓c ≡ 𝐓−𝐓 det 𝐓

we can see that the cofactor satisfies, 𝐓𝐮 × 𝐓𝐯 = 𝐓c 𝐮 × 𝐯

We now express the cofactor in its general components. 

𝐓c = 𝐓c
𝑖
𝛼𝐠𝛼 ⊗𝐠𝑖 = 𝐠α ⋅ 𝐓c𝐠𝑖 𝐠𝛼 ⊗𝐠𝑖

=
1

2
𝜖𝑖𝑗𝑘 𝐠α ⋅ 𝐓c 𝐠𝑗 × 𝐠𝑘 𝐠𝛼 ⊗𝐠𝑖

=
1

2
𝜖𝑖𝑗𝑘 𝐠α ⋅ 𝐓𝐠𝑗 × 𝐓𝐠𝑘 𝐠𝛼 ⊗𝐠𝑖 .

Cofactor Tensor
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The scalar in brackets, 

𝐠α ⋅ 𝐓𝐠𝑗 × 𝐓𝐠𝑘 = 𝐠α ⋅ 𝜖𝑙𝑚𝑛 𝐠𝑚 ⋅ 𝐓𝐠𝑗 𝐠𝑛 ⋅ 𝐓𝐠
𝑘 𝐠𝑙

= 𝛿𝑙
𝛼𝜖𝑙𝑚𝑛 𝐠𝑚 ⋅ 𝐓𝐠𝑗 𝐠𝑛 ⋅ 𝐓𝐠

𝑘

= 𝛿𝑙
𝛼𝜖𝑙𝑚𝑛𝑇𝑚

𝑗
𝑇𝑛
𝑘 = 𝜖𝛼𝑚𝑛𝑇𝑚

𝑗
𝑇𝑛
𝑘

Inserting this above, we therefore have, in invariant 
component form, 

𝐓c =
1

2
𝜖𝑖𝑗𝑘 𝐠α ⋅ 𝐓𝐠𝑗 × 𝐓𝐠𝑘 𝐠𝛼 ⊗𝐠𝑖

=
1

2
𝜖𝑖𝑗𝑘𝜖

𝛼𝑚𝑛𝑇𝑚
𝑗
𝑇𝑛
𝑘𝐠𝛼 ⊗𝐠𝑖

=
1

2
𝛿𝑖𝑗𝑘
𝑙𝑚𝑛𝑇𝑚

𝑗
𝑇𝑛
𝑘𝐠𝑙 ⊗𝐠𝑖

Cofactor Components
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For any invertible tensor, show that the trace of the cofactor 
is the second principal invariant of the original tensor: 𝐼1 𝐓c

= 𝐼2 𝐓

tr 𝐓c =
1

2
𝛿𝑖𝑗𝑘
𝑙𝑚𝑛𝑇𝑚

𝑗
𝑇𝑛
𝑘𝐠𝑙 ⋅ 𝐠

𝑖 = 𝐼1 𝐓c

=
1

2
𝛿𝑖𝑗𝑘
𝑙𝑚𝑛𝑇𝑚

𝑗
𝑇𝑛
𝑘𝛿𝑙

𝑖 =
1

2
𝛿𝑖𝑗𝑘
𝑖𝑚𝑛𝑇𝑚

𝑗
𝑇𝑛
𝑘

=
1

2
𝛿𝑗
𝑚𝛿𝑘

𝑛 − 𝛿𝑘
𝑚𝛿𝑗

𝑛 𝑇𝑚
𝑗
𝑇𝑛
𝑘 =

1

2
𝑇𝑗
𝑗
𝑇𝑘
𝑘 − 𝑇𝑘

𝑗
𝑇𝑗
𝑘

= 𝐼2 𝐓

Trace of the Cofactor
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Show that the determinant of a product is the product 
of the determinants 

𝑪 = 𝑨𝑩 ⇒ 𝐶𝑗
𝑖 = 𝐴𝑚

𝑖 𝐵𝑗
𝑚

so that the determinant of 𝑪 in component form is, 

𝜖𝑖𝑗𝑘𝐶𝑖
1𝐶𝑗

2𝐶𝑘
3 = 𝜖𝑖𝑗𝑘𝐴𝑙

1𝐵𝑖
𝑙𝐴𝑚

2 𝐵𝑗
𝑚𝐴𝑛

3𝐵𝑘
𝑛

Determinants
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det 𝛼𝑪 = 𝜖𝑖𝑗𝑘 𝛼𝐶𝑖
1 𝛼𝐶𝑗

2 𝛼𝐶𝑘
3 = 𝛼3 det 𝑪

For any invertible tensor we show that det 𝑺C = det 𝑺 2

The inverse of tensor 𝑺, 

𝑺−1 = det 𝑺 −1 𝑺C
T

let the scalar 𝛼 = det 𝑺. We can see clearly that,
𝑺C = 𝛼𝑺−𝑇

Taking the determinant of this equation, we have,

det 𝑺C = 𝛼3 det 𝑺−𝑇 = 𝛼3 det 𝑺−1

as the transpose operation has no effect on the value of a 
determinant.  Noting that the determinant of an inverse is 
the inverse of the determinant, we have,

det 𝑺C = 𝛼3 det 𝑺−1 =
𝛼3

𝛼
= det 𝑺 2
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Show that 𝛼𝑺 C = 𝛼2𝑺C

Ans

𝛼𝑺 C = det 𝛼𝑺 𝛼𝑺 −T = 𝛼3 det 𝑺 𝛼−1𝑺−T

= 𝛼2 det 𝑺 𝑺−T = 𝛼2𝑺C

Show that 𝑺−1 C = det 𝑺 −1𝑺T

Ans.
𝑺−1 C = det 𝑺−1 𝑺−1 −𝑇 = det 𝑺 −1𝑺T

Cofactor
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(d) Show that 𝑺C
−1

= det 𝑺 −1𝑺T

Ans.
𝑺C = det 𝑺 𝑺−𝑇

Consequently, 

𝑺C
−1

= det 𝑺 −1 𝑺−𝑇
−1

= det 𝑺 −1𝑺T

(e) Show that 𝑺C
C
= det 𝑺 𝑺

Ans.
𝑺C = det 𝑺 𝑺−𝑇

So that,

𝑺C
C
= det 𝑺C 𝑺C

−𝑇
= det 𝑺 2 𝑺C

−1 𝑇

= det 𝑺 2 det 𝑺 −1𝑺T
𝑇
= det 𝑺 2 det 𝑺 −1𝑺 = det 𝑺 𝑺

as required.

Tuesday, April 7, 2015oafak@unilag.edu.ng 79



3. Show that for any invertible tensor 𝑺 and any vector 𝒖,

𝑺𝒖 × = 𝑺C 𝒖 × 𝑺−𝟏

where 𝑺C and 𝑺−𝟏 are the cofactor and inverse of 𝑺 respectively.

By definition,

𝑺C = det 𝑺 𝑺−T

We are to prove that,

𝑺𝒖 × = 𝑺C 𝒖 × 𝑺−𝟏 = det 𝑺 𝑺−T 𝒖 × 𝑺−𝟏

or that,

𝑺T 𝑺𝒖 × = 𝒖 × det 𝑺 𝑺−𝟏 = 𝒖 × 𝑺C
𝐓

On the RHS, the contravariant 𝑖𝑗 component of 𝒖 × is 

𝒖 × 𝑖𝑗 = 𝜖𝑖𝛼𝑗𝑢𝛼

which is exactly the same as writing, 𝒖 × = 𝜖𝑖𝛼𝑙 𝑢𝛼𝐠𝑖 ⊗𝐠𝑙 in the invariant form.
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Similarly, 𝑺C
. 𝑗

𝑘 .
𝐠𝑘 ⊗𝐠𝑗 =

1

2
𝜖𝑘𝜆𝜂𝜖𝑗𝛽𝛾𝑆𝜆

𝛽
𝑆𝜂
𝛾
𝐠𝑘 ⊗𝐠𝑗 so that its transpose 𝑺C

T
=

1

2
𝜖𝑘𝜆𝜂𝜖𝑗𝛽𝛾𝑆𝜆

𝛽
𝑆𝜂
𝛾
𝐠𝑗 ⊗𝐠𝑘. We may therefore write,

𝒖 × 𝑺C
T

=
1

2
𝜖𝑖𝛼𝑙𝑢𝛼𝜖

𝑘𝜆𝜂𝜖𝑗𝛽𝛾𝑆𝜆
𝛽
𝑆𝜂
𝛾
𝐠𝑖 ⊗𝐠𝑙 ⋅ 𝐠

𝑗 ⊗𝐠𝑘

=
1

2
𝜖𝑖𝛼𝑙𝛿𝑙

𝑗
𝑢𝛼𝜖

𝑘𝜆𝜂𝜖𝑗𝛽𝛾𝑆𝜆
𝛽
𝑆𝜂
𝛾
𝐠𝑖 ⊗𝐠𝑘

=
1

2
𝜖𝑗𝑖𝛼𝜖𝑗𝛽𝛾𝑢𝛼𝜖

𝑘𝜆𝜂𝑆𝜆
𝛽
𝑆𝜂
𝛾
𝐠𝑖 ⊗𝐠𝑘

=
1

2
𝜖𝑘𝜆𝜂 𝛿𝛽

𝑖 𝛿𝛾
𝛼 − 𝛿𝛾

𝑖𝛿𝛽
𝛼 𝑢𝛼𝑆𝜆

𝛽
𝑆𝜂
𝛾
𝐠𝑖 ⊗𝐠𝑘

=
1

2
𝜖𝑘𝜆𝜂 𝑢𝛾𝑆𝜆

𝑖𝑆𝜂
𝛾
− 𝑢𝛽𝑆𝜆

𝛽
𝑆𝜂
𝑖 𝐠𝑖 ⊗𝐠𝑘

=
1

2
𝜖𝑘𝜆𝜂 𝑢𝛽𝑆𝜆

𝑖𝑆𝜂
𝛽
− 𝑢𝛽𝑆𝜆

𝛽
𝑆𝜂
𝑖 𝐠𝑖 ⊗𝐠𝑘 = 𝜖𝑘𝜆𝜂𝑢𝛽𝑆𝜆

𝑖𝑆𝜂
𝛽
𝐠𝑖 ⊗𝐠𝑘
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We now turn to the LHS; 

𝑺𝒖 × = 𝜖𝑙𝛼𝑘 𝑺𝒖 𝛼𝐠𝑙 ⊗𝐠𝑘 = 𝜖𝑙𝛼𝑘𝑆𝛼
𝑗
𝑢𝑗𝐠𝑙 ⊗𝐠𝑘

Now, 𝑺 = 𝑆.𝛽
𝑖. 𝐠𝑖 ⊗𝐠𝛽 so that its transpose, 𝑺T = 𝑆𝛽

𝑖𝐠𝛽 ⊗𝐠𝑖 = 𝑆𝑖
𝛽
𝐠𝑖 ⊗𝐠𝛽 so that 

𝑺T 𝑺𝒖 × = 𝜖𝑙𝛼𝑘𝑆𝑖
𝛽
𝑆𝛼
𝑗
𝑢𝑗𝐠

𝑖 ⊗𝐠𝛽 ⋅ 𝐠𝑙 ⊗𝐠𝑘

= 𝜖𝑙𝛼𝑘𝑆𝑖𝑙𝑆𝛼
𝑗
𝑢𝑗𝐠

𝑖 ⊗𝐠𝑘

= 𝜖𝑙𝛼𝑘𝑆𝑙
𝑖𝑆𝛼

𝑗
𝑢𝑗𝐠𝑖 ⊗𝐠𝑘

= 𝜖𝛼𝛽𝑘𝑢𝑗𝑆𝛼
𝑖 𝑆𝛽

𝑗
𝐠𝑖 ⊗𝐠𝑘 = 𝒖 × 𝑺C

T
.
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*Show that 𝑺C𝒖 × = 𝑺 𝒖 × 𝑺T

The LHS in component invariant form can be written as:

𝑺C𝒖 × = 𝜖𝑖𝑗𝑘 𝑺C𝒖
𝑗
𝐠𝑖 ⊗𝐠𝑘

where 𝑺C
𝑗

𝛽
=

1

2
𝜖𝑗𝑎𝑏𝜖

𝛽𝑐𝑑𝑆𝑐
𝑎𝑆𝑑

𝑏 so that 

𝑺C𝒖
𝑗
= 𝑺C

𝑗

𝛽
𝑢𝛽 =

1

2
𝜖𝑗𝑎𝑏𝜖

𝛽𝑐𝑑𝑢𝛽𝑆𝑐
𝑎𝑆𝑑

𝑏

Consequently, 

𝑺C𝒖 × =
1

2
𝜖𝑖𝑗𝑘𝜖𝑗𝑎𝑏𝜖

𝛽𝑐𝑑𝑢𝛽𝑆𝑐
𝑎𝑆𝑑

𝑏𝐠𝑖 ⊗𝐠𝑘

=
1

2
𝜖𝛽𝑐𝑑 𝛿𝑎

𝑘𝛿𝑏
𝑖 − 𝛿𝑏

𝑘𝛿𝑎
𝑖 𝑢𝛽𝑆𝑐

𝑎𝑆𝑑
𝑏𝐠𝑖 ⊗𝐠𝑘

=
1

2
𝜖𝛽𝑐𝑑𝑢𝛽 𝑆𝑐

𝑘𝑆𝑑
𝑖 − 𝑆𝑐

𝑖𝑆𝑑
𝑘 𝐠𝑖 ⊗𝐠𝑘 = 𝜖𝛽𝑐𝑑𝑢𝛽𝑆𝑐

𝑘𝑆𝑑
𝑖 𝐠𝑖 ⊗𝐠𝑘

On the RHS, 𝒖 × 𝑺T = 𝜖𝛼𝛽𝛾𝑢𝛽𝑆𝛾
𝑘𝐠𝛼 ⊗𝐠𝑘. We can therefore write,

𝑺 𝒖 × 𝑺T = 𝜖𝛼𝛽𝛾𝑢𝛽𝑆𝛼
𝑖 𝑆𝛾

𝑘𝐠𝑖 ⊗𝐠𝑘 =

Which on a closer look is exactly the same as the LHS so that, 

𝑺C𝒖 × = 𝑺 𝒖 × 𝑺T

as required.
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*4. Let 𝛀 be skew with axial vector 𝝎. Given vectors 𝐮 and 𝐯, show 
that 𝛀𝐮 × 𝛀𝐯 = 𝝎⊗𝝎 𝐮 × 𝐯 and, hence conclude that 𝛀C =
𝝎⊗𝝎 .

*

𝛀𝐮 × 𝛀𝐯 = 𝝎 × 𝐮 × 𝝎 × 𝐯 = 𝝎 × 𝐮 × 𝝎× 𝐯
= 𝝎 × 𝐮 ⋅ 𝐯 𝝎 − 𝝎 × 𝐮 ⋅ 𝝎 𝐯 = 𝝎 ⋅ 𝐮 × 𝐯 𝝎

= 𝝎⊗𝝎 𝐮 × 𝐯
But by definition, the cofactor must satisfy,

𝛀𝐮 × 𝛀𝐯 = 𝛀c 𝐮 × 𝐯
which compared with the previous equation yields the desired result 
that

𝛀C = 𝝎⊗𝝎 .
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5. Show that the cofactor of a tensor can be written as

𝑺C = 𝑺2 − 𝐼1𝑺 + 𝐼2𝑰
T

even if 𝑺 is not invertible. 𝐼1, 𝐼2 are the first two invariants of 𝑺.

Ans.

The above equation can be written more explicitly as,

𝑺C = 𝑺2 − tr 𝑺 𝑺 +
1

2
tr2 𝑺 − tr 𝑺2 𝑰

T

In the invariant component form, this is easily seen to be,

𝑺C = 𝑆𝜂
𝑖 𝑆𝑗

𝜂
− 𝑆𝛼

𝛼𝑆𝑗
𝑖 +

1

2
𝑆𝛼
𝛼𝑆𝛽

𝛽
− 𝑆𝛽

𝛼𝑆𝛼
𝛽

𝛿𝑗
𝑖 𝐠𝑗 ⊗𝐠𝑖
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But we know that the cofactor can be obtained directly from the equation,

𝑺C =
1

2
𝜖𝑖𝛽𝛾𝜖𝑗𝜆𝜂𝑆𝛽

𝜆𝑆𝛾
𝜂
𝐠𝑖 ⊗𝐠𝑗 =

1

2

𝛿𝑗
𝑖 𝛿𝜆

𝑖 𝛿𝜂
𝑖

𝛿𝑗
𝛽

𝛿𝜆
𝛽

𝛿𝜂
𝛽

𝛿𝑗
𝛾

𝛿𝜆
𝛾

𝛿𝜂
𝛾

𝑆𝛽
𝜆𝑆𝛾

𝜂
𝐠𝑖 ⊗𝐠𝑗

1

2
𝛿𝑗
𝑖 𝛿𝜆

𝛽
𝛿𝜂
𝛽

𝛿𝜆
𝛾

𝛿𝜂
𝛾 − 𝛿𝜆

𝑖
𝛿𝑗
𝛽

𝛿𝜂
𝛽

𝛿𝑗
𝛾

𝛿𝜂
𝛾 + 𝛿𝜂

𝑖
𝛿𝑗
𝛽

𝛿𝜆
𝛽

𝛿𝑗
𝛾

𝛿𝜆
𝛾 𝑆𝛽

𝜆𝑆𝛾
𝜂
𝐠𝑖 ⊗𝐠𝑗

=
1

2
𝛿𝑗
𝑖 𝛿𝜆

𝛽
𝛿𝜂
𝛾
− 𝛿𝜂

𝛽
𝛿𝜆
𝛾

− 𝛿𝜆
𝑖 𝛿𝑗

𝛽
𝛿𝜂
𝛾
− 𝛿𝜂

𝛽
𝛿𝑗
𝛾

+ 𝛿𝜂
𝑖 𝛿𝑗

𝛽
𝛿𝜆
𝛾
− 𝛿𝜆

𝛽
𝛿𝑗
𝛾

𝑆𝛽
𝜆𝑆𝛾

𝜂
𝐠𝑖 ⊗𝐠𝑗

=
1

2
𝛿𝑗
𝑖 𝑆𝛼

𝛼𝑆𝛽
𝛽
− 𝑆𝜂

𝜆𝑆𝜆
𝜂

− 2𝑆𝑗
𝑖𝑆𝛼

𝛼 + 2𝑆𝜂
𝑖 𝑆𝑗

𝜂
𝐠𝑖 ⊗𝐠𝑗
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Using the above, Show that the cofactor of a vector cross 𝒖 × is 𝒖⊗𝒖

𝒖 × 2 = 𝜖𝑖𝛼𝑗𝑢𝛼𝐠𝑖 ⊗𝐠𝑗 𝜖𝑙𝛽𝑚𝑢
𝛽𝐠𝑙 ⊗𝐠𝑚

= 𝜖𝑖𝛼𝑗𝜖𝑙𝛽𝑚𝑢𝛼𝑢
𝛽 𝐠𝑖 ⊗𝐠𝑚 𝛿𝑗

𝑙 = 𝜖𝑖𝛼𝑗𝜖𝑗𝛽𝑚𝑢𝛼𝑢
𝛽 𝐠𝑖 ⊗𝐠𝑚 = 𝜖𝑖𝛼𝑗𝜖𝛽𝑚𝑗𝑢𝛼𝑢

𝛽 𝐠𝑖 ⊗𝐠𝑚

= 𝛿𝛽
𝑖 𝛿𝑚

𝛼 − 𝛿𝑚
𝑖 𝛿𝛽

𝛼 𝑢𝛼𝑢
𝛽 𝐠𝑖 ⊗𝐠𝑚 = 𝑢𝑚𝑢

𝑖 − 𝛿𝑚
𝑖 𝑢𝛼𝑢

𝛼 𝐠𝑖 ⊗𝐠𝑚 = 𝒖⊗𝒖− 𝒖 ⋅ 𝒖 𝟏

tr 𝒖 × 2 = 𝒖 ⋅ 𝒖 − 3 𝒖 ⋅ 𝒖 = − 2 𝒖 ⋅ 𝒖

tr 𝒖 × = 0

But from previous result,

𝒖 × C = 𝒖 × 2 − 𝒖 × tr 𝒖 × +
1

2
tr2 𝒖 × − tr 𝒖 × 2 𝟏

T

= 𝒖⊗𝒖 − 𝒖 ⋅ 𝒖 𝟏 − 0 +
1

2
0 + 2 𝒖 ⋅ 𝒖 𝟏

T

= 𝒖⊗𝒖− 𝒖 ⋅ 𝒖 𝟏 − 0 + 𝒖 ⋅ 𝒖 𝟏 T

= 𝒖⊗𝒖
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Show that 𝒖⊗𝒖 C = 𝐎

In component form,

𝒖⊗ 𝒖 = 𝑢𝑖𝑢𝑗𝐠𝑖 ⊗𝐠𝑗

So that 

𝒖⊗ 𝒖 2 = 𝑢𝑖𝑢𝑗𝐠𝑖 ⊗𝐠𝑗 𝑢𝑙𝑢𝑚𝐠𝑙 ⊗𝐠𝑚 = 𝑢𝑖𝑢𝑗𝑢
𝑙𝑢𝑚𝐠𝑖 ⊗𝐠𝑚𝛿𝑚

𝑗

= 𝑢𝑖𝑢𝑗𝑢
𝑗𝑢𝑚𝐠𝑖 ⊗𝐠𝑚 = 𝒖⊗𝒖 𝒖 ⋅ 𝒖

Clearly, 

tr 𝒖⊗ 𝒖 = 𝒖 ⋅ 𝒖, tr2 𝒖⊗𝒖 = 𝒖 ⋅ 𝒖 2

and tr 𝒖⊗ 𝒖 2 = 𝒖 ⋅ 𝒖 2 𝒖⊗𝒖 C =  𝒖⊗𝒖 2 − 𝒖⊗ 𝒖 tr 𝒖⊗ 𝒖 +
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Given a Euclidean Vector Space E, a tensor 𝑸 is said to 
be orthogonal if, ∀𝒂, 𝒃 ∈T;

𝑸𝒂 ⋅ 𝑸𝒃 = 𝒂 ⋅ 𝒃

Specifically, we can allow 𝒂 = 𝒃, so that 
𝑸𝒂 ⋅ 𝑸𝒂 = 𝒂 ⋅ 𝒂

Or 
𝑸𝒂 = 𝒂

In which case the mapping leaves the magnitude 
unaltered.

Orthogonal Tensors
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Let 𝒒 = 𝑸𝒂
𝑸𝒂 ⋅ 𝑸𝒃 = 𝒒 ⋅ 𝑸𝒃 = 𝒂 ⋅ 𝒃 = 𝒃 ⋅ 𝒂

By definition of the transpose, we have that,
𝒒 ⋅ 𝑸𝒃 = 𝒃 ⋅ 𝑸𝑻𝒒 = 𝒃 ⋅ 𝑸𝑻𝑸𝒂 = 𝒃 ⋅ 𝒂

Clearly, 𝑸𝑻𝑸 = 𝟏

A condition necessary and sufficient for a tensor 𝑸 to be 
orthogonal is that 𝑸 be invertible and its inverse equal to 
its transpose.

Orthogonal Tensors
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Upon noting that the determinant of a product is the 
product of the determinants and that transposition 
does not alter a determinant, it is easy to conclude that,

det 𝑸𝑻𝑸 = det 𝑸𝑻 det 𝑸 = det 𝑸 2 = 1

Which clearly shows that 
det 𝑸 = ±1

When the determinant of an orthogonal tensor is 
strictly positive, it is called “proper orthogonal”. 

Orthogonal
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A rotation is a proper orthogonal tensor while a 
reflection is not.

Rotation & Reflection
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*Let 𝑸 be a rotation. For any pair of vectors 𝐮, 𝐯 show that 
𝑸 𝐮 × 𝐯 = (𝑸𝐮) × (𝑸𝐯)

This question is the same as showing that the cofactor of  𝑸
is 𝑸 itself. That is that a rotation is self cofactor. We can write 
that 

𝑻 𝐮 × 𝐯 = (𝑸𝐮) × (𝑸𝐯)

where 
𝐓 = cof 𝑸 = det 𝑸 𝑸−T

Now that 𝑸 is a rotation, det 𝑸 = 1, and 
𝑸−T = (𝑸−1)𝑇 = (𝑸T)𝑇 = 𝑸

This implies that 𝑻 = 𝑸 and consequently,
𝑸 𝐮 × 𝐯 = (𝑸𝐮) × (𝑸𝐯)

Rotation
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For a proper orthogonal tensor Q, show that the eigenvalue 
equation always yields an eigenvalue of +1. This means that 
there is always a solution for the equation,

𝑸𝒖 = 𝒖

For any invertible tensor,
𝑺C = det 𝑺 𝑺−T

For a proper orthogonal tensor 𝑸, det𝑸 = 1. It therefore 
follows that,

𝑸C = det𝑸 𝑸−T = 𝑸−T = 𝑸

It is easily shown that tr𝑸C = 𝐼2(𝑸) (HW Show this Romano 26)

Characteristic equation for 𝑸 is,
det 𝑸 − 𝜆𝟏 = 𝜆3 − 𝜆2𝑄1 + 𝜆𝑄2 − 𝑄3 = 0

Or,
𝜆3 − 𝜆2𝑄1 + 𝜆𝑄1 − 1 = 0

Which is obviously satisfied by 𝜆 = 1.
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If for an arbitrary unit vector 𝐞, the tensor, 𝑸 𝜃 = cos 𝜃 𝑰 + (1 − cos 𝜽 )𝐞 ⊗
𝐞 + sin 𝜃 (𝐞 ×) where (𝐞 ×) is the skew tensor whose 𝑖𝑗 component is 𝝐𝒋𝒊𝒌𝒆𝒌, 

show that 𝑸 𝜃 (𝑰 − 𝐞⊗ 𝐞) = cos 𝜃 (𝑰 − 𝐞⊗ 𝐞) + sin 𝜃 (𝐞 ×).

𝑸 𝜃 𝐞⊗ 𝐞 = cos 𝜃 𝐞⊗ 𝐞 + (1 − cos 𝜽 )𝐞⊗ 𝐞 + sin 𝜃 [𝐞 × 𝐞⊗ 𝐞 ]

The last term vanishes immediately on account of the fact that 𝐞⊗ 𝐞 is a 
symmetric tensor. We therefore have,

𝑸 𝜃 𝐞⊗ 𝐞 = cos 𝜃 𝐞⊗ 𝐞 + (1 − cos 𝜽 )𝐞 ⊗ 𝐞 = 𝐞⊗ 𝐞

which again mean that 𝑸 𝜃 so that

𝑸 𝜃 𝑰 − 𝐞⊗ 𝐞 = cos 𝜃 𝑰 + 1 − cos 𝜽 𝐞⊗ 𝐞 + sin 𝜃 𝐞 × − 𝐞⊗ 𝐞

= 𝑐os 𝜃 𝑰 − 𝐞⊗ 𝐞 + sin 𝜃 𝐞 ×
as required.
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If for an arbitrary unit vector 𝐞, the tensor, 𝑸 𝜃 = cos 𝜃 𝑰 + (1 − cos 𝜽 )𝐞 ⊗
𝐞 + sin 𝜃 (𝐞 ×) where (𝐞 ×) is the skew tensor whose 𝑖𝑗 component is 𝜖𝑗𝑖𝑘𝑒𝑘. 

Show for an arbitrary vector 𝐮 that 𝐯 = 𝑸 𝜃 𝐮 has the same magnitude as 𝐮.

Given an arbitrary vector 𝐮, compute the vector 𝐯 = 𝑸 𝜃 𝐮. Clearly,
𝐯 = cos 𝜃 𝐮 + 1 − cos 𝜽 𝐮 ⋅ 𝐞 𝐞 + sin 𝜃 𝐞 × 𝐮

The square of the magnitude of 𝐯 is
𝐯 ⋅ 𝐯 = 𝐯 𝟐
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If for an arbitrary unit vector 𝐞, the tensor, 𝑸 𝜃 = cos 𝜃 𝑰 + (1 − cos 𝜽 )𝐞 ⊗ 𝐞 + sin 𝜃 (𝐞 ×) where (𝐞 ×) is the skew tensor whose 𝑖𝑗 component is 𝝐𝒋𝒊𝒌𝒆𝒌. 
Show for an arbitrary 0 ≤ 𝛼, 𝛽 ≤ 2𝜋, that 𝑸 𝛼 + 𝛽 = 𝑸 𝛼 𝑸 𝛽 .

It is convenient to write 𝑸 𝛼 and 𝑸 𝛽 in terms of their components: The ij component of 

𝑸 𝛼 𝑖𝑗 = (cos 𝛼)𝛿𝑖𝑗 + 1 − cos 𝛼 𝑒𝑖𝑒𝑗 − (sin 𝛼) 𝜖𝑖𝑗𝑘𝑒𝑘

Consequently, we can write,

𝑸 𝛼 𝑸 𝛽 𝑖𝑗 = 𝑸 𝛼 𝒊𝒌 𝑸 𝛽 𝑘𝑗 =

= (cos 𝛼)𝛿𝑖𝑘 + 1 − cos 𝛼 𝑒𝑖𝑒𝑘 − (sin 𝛼) 𝜖𝑖𝑘𝑙𝑒𝑙 (cos𝛽)𝛿𝑘𝑗 + 1 − cos𝛽 𝑒𝑘𝑒𝑗 − (sin 𝛽) 𝜖𝑘𝑗𝑚𝑒𝑚
= (cos𝛼 cos 𝛽) 𝛿𝑖𝑘𝛿𝑘𝑗 + cos 𝛼(1 − cos 𝛽)𝛿𝑖𝑘𝑒𝑘𝑒𝑗 − cos 𝛼 sin 𝛽 𝜖𝑘𝑗𝑚𝑒𝑚𝛿𝑖𝑘 + cos 𝛽(1 − cos𝛼)𝛿𝑘𝑗𝑒𝑖𝑒𝑘 + 1 − cos𝛼 1 − cos 𝛽 𝑒𝑖𝑒𝑘𝑒𝑘𝑒𝑗

− 1 − cos 𝛼 𝑒𝑖𝑒𝑘 (sin 𝛽) 𝜖𝑘𝑗𝑚𝑒𝑚 − (sin 𝛼 cos 𝛽) 𝜖𝑖𝑘𝑙𝑒𝑙𝛿𝑘𝑗 − (sin 𝛼) 1 − cos 𝛽 𝑒𝑘𝑒𝑗 𝜖𝑖𝑘𝑙𝑒𝑙 + (sin 𝛼 sin 𝛽) 𝜖𝑖𝑘𝑙𝜖𝑘𝑗𝑚𝑒𝑙𝑒𝑚
= (cos𝛼 cos 𝛽) 𝛿𝑖𝑗 + cos 𝛼(1 − cos 𝛽)𝑒𝑖𝑒𝑗 − cos𝛼 sin 𝛽 𝜖𝑖𝑗𝑚𝑒𝑚 + cos 𝛽(1 − cos 𝛼)𝑒𝑖𝑒𝑗 + 1 − cos 𝛼 1 − cos 𝛽 𝑒𝑖𝑒𝑗 − (sin 𝛼 cos𝛽) 𝜖𝑖𝑗𝑙𝑒𝑙

+ (sin 𝛼 sin 𝛽) 𝛿𝑙𝑗𝛿𝑖𝑚 − 𝛿𝑙𝑚𝛿𝑗𝑖 𝑒𝑙𝑒𝑚
= (cos𝛼 cos 𝛽 − sin 𝛼 sin 𝛽) 𝛿𝑖𝑗 + 1 − ( cos αcos 𝛽 − sin 𝛼 sin 𝛽) 𝑒𝑖𝑒𝑗 − cos 𝛼 sin 𝛽 − sin 𝛼 cos 𝛽 𝜖𝑖𝑗𝑚𝑒𝑚
= 𝑸 𝛼 + 𝛽 𝑖𝑗
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Use the results of 52 and 55 above to show that the tensor 𝑸 𝜃 = cos 𝜃 𝑰 + (1 −
cos 𝜽 )𝐞 ⊗ 𝐞 + sin 𝜃 (𝐞 ×) is periodic with a period of 2𝜋.

From 55 we can write that 𝑸 𝛼 + 2𝜋 = 𝑸 𝛼 𝑸 2𝜋 . But from 52, 𝑸 0 =
𝑸 2𝜋 = 𝑰. We therefore have that,

𝑸 𝛼 + 2𝜋 = 𝑸 𝛼 𝑸 2𝜋 = 𝑸 𝛼

which completes the proof. The above results show that 𝑸 𝛼 is a rotation along 
the unit vector 𝐞 through an angle 𝛼.
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Define Lin+as the set of all tensors with a positive determinant. Show that Lin+is 
invariant under G where is the proper orthogonal group of all rotations, in the 
sense that for any tensor 𝐀 ∈ Lin+ 𝐐 ∈ G ⇒ 𝐐𝐀𝐐T ∈ Lin+ .(G285)

Since we are given that 𝐀 ∈ Lin+, the determinant of 𝐀 is positive. Consider 

det 𝐐𝐀𝐐T . We observe the fact that the determinant of a product of tensors is 

the product of their determinants (proved above). We see clearly that,

det 𝐐𝐀𝐐T = det 𝐐 × det 𝐀 × det 𝐐T . Since 𝐐 is a rotation, det 𝐐 =

det 𝐐T = 1. Consequently we see that, 

det 𝐐𝐀𝐐T = det 𝐐 × det 𝐀 × det 𝐐T

= det 𝐐𝐀𝐐T

= 1 × det 𝐀 × 1
= det 𝐀

Hence the determinant of 𝐐𝐀𝐐T is also positive and therefore 𝐐𝐀𝐐T ∈ Lin+ .
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Define Sym as the set of all symmetric tensors. Show that Sym is invariant under G 
where is the proper orthogonal group of all rotations, in the sense that for any 
tensor A ∈ Sym every 𝐐 ∈ 𝐺 ⇒ 𝐐𝐀𝐐T ∈ Sym. (G285)

Since we are given that A ∈ Sym, we inspect the tensor 𝐐𝐀𝐐T. Its transpose is, 

𝐐𝐀𝐐T T
= 𝐐T T

𝐀𝐐T = 𝐐𝐀𝐐T. So that 𝐐𝐀𝐐T is symmetric and therefore 

𝐐𝐀𝐐T ∈ Sym. so that the transformation is invariant.
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Central to the usefulness of tensors in Continuum Mechanics is the 
Eigenvalue Problem and its consequences. 

Å These issues lead to the mathematical representation of such 
physical properties as Principal stresses, Principal strains, 
Principal stretches, Principal planes, Natural frequencies, Normal 
modes, Characteristic values, resonance, equivalent stresses, 
theories of yielding, failure analyses, Von Mises stresses, etc.

Å As we can see, these seeming unrelated issues are all centered 
around the eigenvalue problem of tensors. Symmetry groups, 
and many other constructs that simplify analyses cannot be 
understood outside a thorough understanding of the eigenvalue 
problem. 

Å At this stage of our study of Tensor Algebra, we shall go through 
a simplified study of the eigenvalue problem. This study will 
reward any diligent effort. The converse is also true. A superficial 
understanding of the Eigenvalue problem will cost you dearly.
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Recall that a tensor 𝑻 is a linear transformation for 𝒖 ∈
e

𝑻: e →e
states that ∃ 𝒘 ∈e such that,

𝑻𝒖 ≡ 𝑻 𝒖 = 𝒘

Generally, 𝒖 and its image, 𝒘 are independent vectors 
for an arbitrary tensor 𝑻. The eigenvalue problem 
considers the special case when there is a linear 
dependence between 𝒖 and 𝒘.

The Eigenvalue Problem
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Here the image 𝒘 = 𝜆𝒖 where 𝜆 ∈a
𝑻𝒖 = 𝜆𝒖

The vector 𝒖, if it can be found, that satisfies the above 
equation, is called an eigenvector while the scalar 𝜆 is its 
corresponding eigenvalue. 

The eigenvalue problem examines the existence of the 
eigenvalue and the corresponding eigenvector as well 
as their consequences.

Eigenvalue Problem
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In order to obtain such solutions, it is useful to write out 
this equation in its component form:

𝑇𝑗
𝑖𝑢𝑗𝐠𝑖 = 𝜆𝑢𝑖𝐠𝑖

so that,

𝑇𝑗
𝑖 − 𝜆𝛿𝑗

𝑖 𝑢𝑗𝐠𝑖 = 𝐨

the zero vector. Each component must vanish 
identically so that we can write

𝑇𝑗
𝑖 − 𝜆𝛿𝑗

𝑖 𝑢𝑗 = 0
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From the fundamental law of algebra, the above 
equations can only be possible for arbitrary values of 𝑢𝑗

if the determinant,

𝑇𝑗
𝑖 − 𝜆𝛿𝑗

𝑖

Vanishes identically. Which, when written out in full, 
yields,

𝑇1
1 − 𝜆 𝑇2

1 𝑇3
1

𝑇1
2 𝑇2

2 − 𝜆 𝑇3
2

𝑇1
3 𝑇2

3 𝑇3
3 − 𝜆

= 0
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Expanding, we have,

−𝑇3
1𝑇2

2𝑇1
3 + 𝑇2

1𝑇3
2𝑇1

3 + 𝑇3
1𝑇1

2𝑇2
3 − 𝑇1

1𝑇3
2𝑇2

3 − 𝑇2
1𝑇1

2𝑇3
3

+ 𝑇1
1𝑇2

2𝑇3
3 + 𝑇2

1𝑇1
2𝜆 − 𝑇1

1𝑇2
2𝜆 + 𝑇3

1𝑇1
3𝜆 + 𝑇3

2𝑇2
3𝜆

− 𝑇1
1𝑇3

3𝜆 − 𝑇2
2𝑇3

3𝜆 + 𝑇1
1𝜆2 + 𝑇2

2𝜆2 + 𝑇3
3𝜆2 − 𝜆3 = 0

= −𝑇3
1𝑇2

2𝑇1
3 + 𝑇2

1𝑇3
2𝑇1

3 + 𝑇3
1𝑇1

2𝑇2
3 − 𝑇1

1𝑇3
2𝑇2

3 − 𝑇2
1𝑇1

2𝑇3
3

+ 𝑇1
1𝑇2

2𝑇3
3

+ 𝑇2
1𝑇1

2 − 𝑇1
1𝑇2

2 + 𝑇3
1𝑇1

3 + 𝑇3
2𝑇2

3 − 𝑇1
1𝑇3

3 − 𝑇2
2𝑇3

3 𝜆

+ 𝑇1
1 + 𝑇2

2 + 𝑇3
3 𝜆2 − 𝜆3 = 0

or
𝜆3 − 𝐼1𝜆

2 + 𝐼2𝜆 − 𝐼3 = 0
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*This is the characteristic equation for the tensor 𝑻. 
From here we are able, in the best cases, to find the 
three eigenvalues. Each of these can be used in to 
obtain the corresponding eigenvector. 

*The above coefficients are the same invariants we 
have seen earlier!

Principal Invariants Again
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A tensor 𝑻 is Positive Definite if for all 𝒖 ∈e, 
𝒖 ⋅ 𝑻𝒖 > 0

It is easy to show that the eigenvalues of a symmetric, 
positive definite tensor are all greater than zero. (HW: 
Show this, and its converse that if the eigenvalues are 
greater than zero, the tensor is symmetric and positive 
definite. Hint, use the spectral decomposition.)

Positive Definite Tensors
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*We now state without proof (See Dill for proof) the 
important Caley-Hamilton theorem: Every tensor 
satisfies its own characteristic equation. That is, the 
characteristic equation not only applies to the 
eigenvalues but must be satisfied by the tensor 𝐓
itself. This means,

𝐓3 − 𝐼1𝐓
2 + 𝐼2𝐓 − 𝐼3𝟏 = 𝑶

is also valid. 

*This fact is used in continuum mechanics to obtain the 
spectral decomposition of important material and 
spatial tensors.

Cayley- Hamilton Theorem
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*It is easy to show that when the tensor is symmetric, its 
three eigenvalues are all real. When they are distinct, 
corresponding eigenvectors are orthogonal. It is 
therefore possible to create a basis for the tensor with an 
orthonormal system based on the normalized 
eigenvectors. This leads to what is called a spectral 
decompositionof a symmetric tensor in terms of a 
coordinate system formed by its eigenvectors:

𝐓 = 

𝑖=1

3

𝜆𝑖 𝐧𝑖⨂𝐧𝑖

Where 𝐧𝑖 is the normalized eigenvector corresponding to 
the eigenvalue 𝜆𝑖.

Spectral Decomposition
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*The above spectral decomposition is a special case 
where the eigenbasis forms an Orthonormal Basis. 
Clearly, all symmetric tensors are diagonalizable.

*Multiplicity of roots, when it occurs robs this 
representation of its uniqueness because two or 
more coefficients of the eigenbasis are now the same.

*The uniqueness is recoverable by the ingenious 
device of eigenprojection. 

Multiplicity of Roots
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Case 1: All Roots equal.

*The three orthonormal eigenvectors in an ONB 
obviously constitutes an Identity tensor 𝟏. The unique 
spectral representation therefore becomes  

𝐓 = 

𝑖=1

3

𝜆𝑖 𝐧𝑖⨂𝐧𝑖 = 𝜆 

𝑖=1

3

𝐧𝑖⨂𝐧𝑖

since 𝜆1 = 𝜆2 = 𝜆3 = 𝜆 in this case.

Eigenprojectors
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Case 2: Two Roots equal: 𝜆1unique while 𝜆2 = 𝜆3
In this case, 

𝐓 = 𝜆1𝐧1⨂𝐧1 + 𝜆2 𝟏 − 𝐧1⨂𝐧1
since 𝜆2 = 𝜆3 in this case.

The eigenspace of the tensor is made up of the projectors:
𝑷1 = 𝐧1⨂𝐧1

and 
𝑷2 = 𝟏 − 𝐧1⨂𝐧1

Eigenprojectors
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The eigen projectors in all cases are based on the 
normalized eigenvectors of the tensor. They constitute 
the eigenspace even in the case of repeated roots. They 
can be easily shown to be:

1. Idempotent: 𝑷𝑖 𝑷𝑖 = 𝑷𝑖 (no sums)

2. Orthogonal: 𝑷𝑖 𝑷𝑗 = 𝑶 (the anihilator)

3. Complete: 𝑖=1
𝑛 𝑷𝑖 = 𝟏 (the identity)

Eigenprojectors
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*For symmetric tensors (with real eigenvalues and 
consequently, a defined spectral form in all cases), 
the tensor equivalent of real functions can easily be 
defined:

*Trancendental as well as other functions of tensors 
are defined by the following maps:

𝑭:b©|→b©|

Maps a symmetric tensor into a symmetric tensor. The 
latter is the spectral form such that,

𝑭 𝑻 ≡ 

𝑖=1

3

𝑓(𝜆𝑖)𝐧𝑖⨂𝐧𝑖

Tensor Functions
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*Where 𝑓(𝜆𝑖) is the relevant real function of the ith
eigenvalue of the tensor 𝑻.

*Whenever the tensor is symmetric, for any map,
𝑓:a→a;∃ 𝑭:b©|→b©|

As defined above. The tensor function is defined 
uniquely through its spectral representation.

Tensor functions
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Show that the principal invariants of a tensor 𝑺 satisfy 

𝑰𝒌 𝑸𝑺𝑸T = 𝐼𝑘 𝑺 , 𝑘 = 1,2, or 3 Rotations and orthogonal 

transformations do not change the Invariants

𝐼1 𝑸𝑺𝑸T = tr 𝑸𝑺𝑸T = tr 𝑸T𝑸𝑺 = tr 𝑺 = 𝐼1(𝑺)

𝐼2 𝑸𝑺𝑸T =
1

2
tr2 𝑸𝑺𝑸T − tr 𝑸𝑺𝑸T𝑸𝑺𝑸T

=
1

2
I1
2 𝑺 − tr 𝑸𝑺𝟐𝑸T

=
1

2
I1
2 𝑺 − tr 𝑸T𝑸𝑺𝟐

=
1

2
I1
2(𝑺) − tr 𝑺𝟐 = 𝐼2(𝑺)

𝐼3 𝑸𝑺𝑸T = det 𝑸𝑺𝑸T

= det 𝑸T𝑸𝑺

= det 𝑺 = 𝐼3 𝑺

Hence 𝐼𝑘 𝑸𝑺𝑸T = 𝐼𝑘 𝑺 , 𝑘 = 1,2, or 3
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Show that, for any tensor 𝑺, tr 𝑺2 = 𝐼1
2(𝑺) − 2𝐼2 𝑺 and tr 𝑺3 =

𝐼1
3 𝑺 − 3𝐼1𝐼2 𝑺 + 3𝐼3 𝑺

𝐼2 𝑺 =
1

2
tr2 𝑺 − tr 𝑺2

=
1

2
𝐼1
2(𝑺) − tr 𝑺2

So that,

tr 𝑺2 = 𝐼1
2(𝑺) − 2𝐼2 𝑺

By the Cayley-Hamilton theorem,
𝑺3 − 𝐼1𝑺

2 + 𝐼2𝑺 − 𝐼3𝟏 = 𝟎

Taking a trace of the above equation, we can write that,

tr 𝑺3 − 𝐼1𝑺
2 + 𝐼2𝑺 − 𝐼3𝟏 = tr(𝑺3) − 𝐼1tr 𝑺2 + 𝐼2tr 𝑺 − 3𝐼3 = 0

so that,

tr 𝑺3 = 𝐼1 𝑺 tr 𝑺2 − 𝐼2 𝑺 tr 𝑺 + 3𝐼3 𝑺

= 𝐼1 𝑺 𝐼1
2 𝑺 − 2𝐼2 𝑺 − 𝐼1 𝑺 𝐼2 𝑺 + 3𝐼3 𝑺

= 𝐼1
3 𝑺 − 3𝐼1𝐼2 𝑺 + 3𝐼3 𝑺
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Suppose that 𝑼 and 𝑪 are symmetric, positive-definite 
tensors with 𝑼2 = 𝑪, write the invariants of C in terms 
of U

𝐼1 𝑪 = tr 𝑼2 = 𝐼1
2(𝑼) − 2𝐼2 𝑼

By the Cayley-Hamilton theorem,
𝑼3 − 𝐼1𝑼

2 + 𝐼2𝑼 − 𝐼3𝑰 = 𝟎

which contracted with 𝑼 gives,
𝑼4 − 𝐼1𝑼

3 + 𝐼2𝑼
2 − 𝐼3𝑼 = 𝟎

so that,
𝑼4 = 𝐼1𝑼

3 − 𝐼2𝑼
2 + 𝐼3𝑼

and 

tr 𝑼4 = 𝐼1tr 𝑼3 − 𝐼2tr 𝑼2 + 𝐼3tr 𝑼

= 𝐼1 𝑼 𝐼1
3 𝑼 − 3𝐼1 𝑼 𝐼2 𝑼 + 3𝐼3 𝑼

− 𝐼2 𝑼 𝐼1
2 𝑼 − 2𝐼2 𝑼 + 𝐼1 𝑼 𝐼3 𝑼

= 𝐼1
4 𝑼 − 4𝐼1

2 𝑼 𝐼2 𝑼 + 4𝐼1 𝑼 𝐼3 𝑼
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But,

𝐼2 𝑪 =
1

2
𝐼1
2 𝑪 − tr 𝑪2 =

1

2
𝐼1
2 𝑼2 − tr 𝑼4

=
1

2
tr2 𝑼2 − tr 𝑼4

=
1

2
𝐼1
2 𝑼 − 2𝐼2 𝑼

2
− tr 𝑼4

=
1

2
 𝐼1

4 𝑼 − 4𝐼1
2 𝑼 𝐼2 𝑼 + 4𝐼2

2 𝑼
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