Linear Elasticity

Constitutive Laws for Linear Elasticity




Scope for Today
\’

* Generalization of Uniaxial Hooke’s Law.
* Tensor Transformation Laws. Covariant, Contravariant

* Material Symmetries: Anisotropy, Isotropy, Aelotropy,
Orthotropy and Transverse Isotropy

« Effects of Symmetry on Material Constants. Isotropic
Tensor Functions

* Elastic Constants and their implications
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Hooke’s Law

JU ' - OU 2l W CONSTITUT

) ’ 7
always with Hooke’s famous law. ——

* The theory that stress is proportional to strainis a naturally
appealing theory. This comes first from our familiarity with
the theory; and secondly by the fact that it is easily
demonstrated in simple laboratory experiments.

* The proportionality of the stress to the strain is the linearity.

* The ability of the material to regain its original state after
removal of any loading is elasticity. An elastic material has no
memory. Its state is dependent only on its load; not on the
rate at which the load is applied nor on the history of
loading.
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One Dimensional Strain

Recall that the Lagrangian Strain Tensor, in its spectral form can be written
as,

The Lagrangian Strain Tensor
1
E——(C 1) ——23 1().2 1)ui®ui
Where the eigenvalues, Al = 1,2,3 are the principal stretches.

: : : : l
In one dimension this degenerates into a scalar value - the stretch, A = =

that is, ratio of lengths in the spatial state and the reference state. ’
Therefore the uniaxial Lagrangian strain,
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* We see clearly that in one dimension, the Lagrangian strain tensor
degenerates to our definition of strain only if we make one crucial

assumption: Second order quantities are insignificant. What does

this mean? When is original length indistinguishable from final
length? Small strain?
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Generalization to Multi-Axial States

* The above manipulations show clearly tha definition of
strain we are used to is only valid in small strain.

* Defining strain as increase in length over original length is
not the same as our definition of strain when the
deformations are sufficiently large such that second order
quantities become significant!

* We have also shown in previous coverage from Cauchy
stress principle that we are dealing not with one scalar when
we talk about stress but with nine: the components of the
stress tensor!
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Extension of Elementary Notions

\’

« Of course, the stress is symmetrical (Cauchy’s second
law) and the small strain, as we have seen, is also
symmetrical.

+ Still we are dealing with six stress components and six
strain components.

 Itis clear that the simple formulation of Hookean
constitutive relations are not very helpful in the
general stress state.
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Generalized Hooke’s Law

* The generalized Hooke's Law state
isotropic, homogeneous material, the stress is a linear
function of the strain. That is,

011 = Q1€11 T A1 T+ TA9E33
012 = P1€11 + P21z ++ +Po€33

033 = Y1€11 T V2812 T TV9E33
Where the 81 scalar quantities, a4, a,,..., Yg are the
constants of proportionality.
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Symmetry of Stress & Strain

We can write this equations as atensor eqm

o = Cs
where C is the fourth-order tensorin,
cUg; @ g; = Cetlg; R g;
whose 81 components are the values
a; = Cif,ay = Ciz, .., Vo = (:3333
Note that the tensor equation is simply a convenient form of

expressing the linearity in the context here. It has no other
meaning.

Leaving out the coordinate vectors, we have,

[
l] — Clegkl
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Symmetry of Stress & Strain
.‘

* By Cauchy’s first law of motion, we know that the
stress tensor is symmetric. We also know that the
small strain tensor is a symmetric quantity. On
account of these, it is clear that we have a linear
relationship among a set of six stress components
and six strain components rather than nine each.

* This obviously reduces our constants from 81to 36
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Simplification

It is a bit more difficult to visualize a tenso!
order than 2. We therefore adopt the followmg
simplification, taking advantage of the symmetry of the
stress and strain tensors with a revised material tensor that
is two dimensional. This time however, the tensors are in
six dimensional space. Let,
Ei = €11, By = &35, E3 = €33, E4 = €13, E5 = &3, E¢ = €33
X1 = 011,23 = 02,23 = 033,24 = Oy, 45 = 013, 26
Similarly, we introduce the material constants,

0323

m _ U Lj L tj _ U

Lj
Cme = Cy3
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Simplification

Xs
Xg

/

The strains now appear as vectors in a six-D space as,
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Compliance

\
The strains now appear as vectors in a six-D space as,

Zi = ClJEJ
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Material symmetries

\

* An Isotropic material is symmetrical over all planes
cutting at a point.

* A material symmetric about one plane is said to be
aelotropic

+ material (crystal), with one plane of symmetry, the 36
constants ci] reduce to 20 constants.

+* Heinbockel as well as several authors
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Component Transformation

the set of parametr 1L |

C: Xi=Xi(), i=1,.,n
which is the parametric representation of a curve in n-
dimensions. The tangent vector is defined as,

W—dﬂ =1
= i=1,..,n
Agaln conS|der the transformation, X! =
Xt(xt, x4, ...,x™),i = 1,2,...,n whichis 5|mp|y a way of

replacmg the old variables X‘ by new ones x',i =
1, ...,n. As usual, if the Jacobian does not vamsh we

m_ay also have the inverse transformation, x* =
xt(XL X%, ., XM, i=12,..,n
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Contravariant Vectors

\

In the new coordinates, the tangent vector can be

defined 7! which satisfies,

dxt B dxt dXx/ _ dxt
dt ~ 0xJ dt — = 9xJ
This defines the transformation law of an absolute
contravariant tensor of rank one. We can proceed to

define a general tensor of rank one as follows:

Tt =
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Contravariant Vectors

\

Whenever n quantities a' in a coordinate system

(x1,x2, ..., x™) are related to n quantities a’ in a coordinate
system (X1, X%, ..., X™) such that the Jacobian ] is different
from zero, then if the transformation law,

}

Ll x2, ... x™) = Wal (X1, X2,..., X" :
at(x®,x%, .., x™) =]V al( ) 537

is satisfied, these quantities are called the components of a
relative contravariant tensor of rank or order one with weight
W.Whenever W = 0 these quantities are called the
components of an absolute contravariant tensor of rank or
order one.
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Tensor Definition

To prove that the above definition is cc ]
definition of a vector, consider n basis vectors g; with
their reciprocal bases g'. We are interested in how
components will transform in the event of a change of
basis to the set y; and its reciprocal basis ¥ such that
the second-order tensor A is the transformation tensor
from one natural basis to another so that,

Yi = A48;
for the natural bases. And, for the reciprocal bases, the
tensor B is given

yi — Bgl
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Tensor Definition

We can represent the transformatic
product basis themselves and write; A = A ;8; & g’. We can
see immediately that, in terms of the components of A,

Y =Ag;i = A"(gk ® g') g = Abgi5] = Aligy
Similarly, y* = Bg' = Bi'g’.
From these expressmns we can easily conclude that 4 =
Yi ® gtand B = y' @ g; [Test and see they have the same

effects on vectors; for example, Ag; = (YJ X g )gl

y6) = ¥ as expected.] Furthermore, we can find
expressmns for the components of the transformation

tensors. Contracting y; = Akgk with g/, we see that AJ
yl g/, and from its reciprocal equivalent, we see that B L =

Y -8
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Reciprocity

transformatlon is an identity tran E

case, A = B = 1 the identity tensor. In the ore general
case, we recall that reciprocity implies,

vi-v/ = (4g) - (Bg/) = g:(A"B)g' = &/
which is true only if
A'B=1
Or, B = A~'. Writing the transformation tensors in

component form, we could also state the reciprocity
relationship as,

vi- v/ = (4g) - (Bg’)
= (A%8k) - (B’g’)
=A% B'g, -g' = A% B/s. = Ak B) = &/
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Reciprocity Components

unit differentia elemer
dr = g]dX] = yl-dxi

0x’

— 8 oxt

dxt

j .
from which we see that y; = ox gi = A_Jl.gj. Clearly,
4 = axJ

dxt
I 9yl

: 0XJ dx' -
since we know that A"B = 1. And, a);i a;k = §;

Comparing to the reciprocity relationship (in terms of
dxt
axk

components), we see immediately that Bi{ =
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Reciprocity Components

quantity a as, ——_
a=ag; =avy;

so that a' and a! are the contravariant components of

the vectors as we refer to the chosen (natural bases).

We can now observe the coordinates transform from

one natural base to another:

l
afi: a.yizajg..yizajB'.izaj ax
J J 0XJ

Which is the expected relationship between absolute
tensors of order or rank one.

Department of Systems Engineering, University of Lagos 22 oafak@unilag.edu.ng 12/30/2012



Covariant Vectors

We introduce cove VS by w ,
example: Consider an absolute scalar whose
component in one coordinate system

is,f (X1, X%, ...,X™) and that this is equal to the
components h(x1,x%, ..., x™) after a coordinate
transformation with a non-vanishing Jacobian as before,

h(xt, x?, ..., x™) = fF(XL, X%, ..., XM
Consider the gradient of this scalar in the new system of
coordinates:
oh(xl, x4, ..., x™) B af (X1, X%, ..., X™
dxt - Oxt
B af (Xt x4, ..., X")ox/
B 0XJ 0x!
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Covariant Vectors

\

_ 0h(xt, x4, .., x™)

If we define,

h; (xt, x?, ..., x™) P ,and
If (X1, X2, .., X™)
vl p2 ny —
f:(X1, X2, .., X™) = =

Then we may write, ignoring the obvious functional
dependencies,

ho= )¢
L) gyt
This is the transformation law for an absolute covariant
tensor of rank one. In general therefore, we may write that,
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Definition

\

Whenever n quantities «; in a coordinate systemI
(x',x%,...,x™) are related to n quantities a; in a
coordinate system (X1, X?, ..., X™) such that the Jacobian
| is different from zero, then if the transformation law,
X/
a;(xt, x%, ., x™) = Wa (X X2, ., XT) P
X

is satisfied, these quantities are called the components
of a relative covariant tensor of rank or order one with
weight W. Whenever W = 0 these quantities are called
the components of an absolute covariant tensor of rank

or order one.
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in terms of bases reciprocal to the earlier chos ural)
bases. We seek the relationship between the components in
one basis to another:

a; = a-y; =ajgj_‘)’i
i X’
= Ay =05

which is the transformation relation between the
components of two absolute order one tensors from one
coordinate basis to another. This proves that a vector of rank
one, referred to basis reciprocal to the originally chosen
(natural) system is an absolute covariant tensor of rank one.
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Higher-Order Tensors

\’

In the case of tensors of orders higher than one, we
may define relative tensors of these orders that are
contravariant, covariant or mixed. The rank two tensors
have most of the attributes expected in higher ranked
quantities. We will therefore define contravariant,
covariant and mixed tensors of rank two as follows:
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Contravariance Definition

\

Whenever n? quantities T in a coordinate system (x1, x2, ..., x™) are
related to n? quantities T*P in a coordinate system (X1, X2, ..., X™)
such that the Jacobian | of transformation is different from zero,
then if the transformation law,

dx' dx/
0XxoXh

is satisfied, these quantities are called the components of a relative
contravariant tensor of rank or order two with weight W. Whenever
W = 0 these quantities are called the components of an absolute

contravariant tensor of rank or order two. The tensor itself is the
totality of all such components.

T (xt, x2, ..., x™) = JWT* (X1, X2, ..., X™)
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that are related to the natural bases as before so that,
T=T*"g, Qgs =17y, Qv
These components can be obtained from the dot product of

the tensors themselves with the respective reciprocal
product bases. In particular,

=7 (T8 ® gp)V'| = T*(v' - 8a) (85 - V)
_ Ta,BBlB] _ Ta,B 0x' 0x’
B a=B 0X* oXxB

which are the transformation equations of the components
of a rank two contravariant tensor.
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Covariance Definition

o

Whenever n? quantities g; j ina coordinate system
(x1,x2,...,x™) are related to n* quantities f, 3 in a coordinate

system (X1, X%, ...,X™) such that the Jacobian ] is different
from zero, then if the transformation law,

X% oxP
dxt dxJ

is satisfied, these quantities are called the components of a
relative covariant tensor of rank or order two with weight W.

Whenever W = 0 these quantities are called the components
of an absolute covariant tensor of rank or order two.

T (et %%, x™) = W T (X1 X2, 00, X™)
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And, as before, we find the relationship
two sets of components

;= T(ri ®v;) = vi (Ty;)
=y (Tap8* @ 8°)v; = Topvi - (8* ® 8°)y;
= Top(vi - 8)(8F  v;) = TupA%A"
X% dXP

WP oxt dx

so that this tensor, expressed in terms of its covariant

components is an absolute covariant second-order
tensor.
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Aelotropic Materials

* A material with a'plane of s 1etry )
aelotropic. o

* We will now show that for an aelotropic material, the
number of necessary constants reduces from 36 to
24.

* In order to do this, we transform the constitutive
relations about the plane of symmetry. We will then
see that the constants must reduce in number
accordingly for the material to possess this symmetry.

* We elect to do this transformation using
contravariant tensors. For the same proof, using
covariant components, see Heinbockel.
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Aelotropic Transformation

\’

From the above definition of contravariance,
transforming from the Reference system to the Spatial,
dx' dx/

0X*0XF

Where we are looking at a stress tensor X in one system
and its image o in a transformed system. We are
utilizing the known relationships between the
transformed components

ot (x) = 2% (X)

Department of Systems Engineering, University of Lagos 33 oafak@unilag.edu.ng 12/30/2012



Aelotropy

nd imagine € :
symmetry, se the Youtube video e
http://www.youtube.com/watch?v=nmr46D5Cy9E)

The transformation equation is,

x1 1 0 0171/x?
()l 5 ez
x3 0 0 —11\x3
Where we are simply restating the fact that
xl — Xl,xZ — XZ
So that the X' — X#plane remains unchanged while
x3 — _X3

indicates that the transformed axes reverses the third coordinate.
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Transformed Stress & Strain

he above tran

oxt  0x* 0x3 ————_

0xX1 o0x2  9x3
All other terms in the Jacobian of transformation vanish
so that,

1

dx
X’
Under these circumstances, the following relationship

holds between the reference stress/strain components
and and the transformed (spatial)

=0Vi#]
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Transformed Relations

(J

2 >
o € e
o3 £

and
o? 4 |’

gt E*
o\ e\
a© —x6 g —E®
This constitutive relation, that holds in the reference

system is a material relationship and must survive this
transformation. We must therefore have,

o= cj‘Ef as wellas gt = cj‘gf with the same material

constants cji. The only way this can happen is that
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Transformed Relations

4 ] _
i €1 €1 ¢ G (G ¢t ¢2 ¢ ¢t 0 0
1 .2 .3 .4 .5 6
C; € € Cp (3 G C21 c% c23 cg 0 0
1 .2 .3 .4 .5 6
€3 €3 €3 €3 €3 €3 _|cd 2 3 o 0 O
2 3 ool Tl 2 3 4 000
4 Cqp C4 C4 Cp (4 Ci C§ Ci Ci 5 .6
1 .2 .3 .4 5 6 5 (s
C5 C5 C5 C5 C5 C5 0 0 0 0 C5 C6
ce & g ocg ¢ c&] LO 0 0 0 "6 6.

So that aelotropy reduces the material constants from 36 to 20
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Orthotropy

piezoelectric materials (e.g. It) and 2-1
fiber-reinforced composites, are orthotrom
definition, an orthotropic material has at least 2
orthogonal planes of symmetry, where material
properties are independent of direction within each
plane. Such materials require 9 independent variables

(i.e. elastic constants) in their constitutive matrices.

http://www.efunda.com/formulae/solid mechanics/mat
_mechanics/hooke orthotropic.cfm
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Orthotropic transformation

\

* Inclusion of another plane of symmetry and
proceeding as we have just done, we can easily see
that orthotropy reduces the number of constants to
12. See page 247 of Heinbockel to see how such a
transformation is accomplished.
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o

If a material is symmetric about all planes — that is in
every direction, the constants reduce to three.

Such a material is said to be isotropic.

It can be further shown that the three constants in an
isotropic material are not all independent. The number
reduces to 2.

Hence, when a material is homogeneous and isotropic,
only two constants are needed to describe its
constitution. This is the generalized Hooke’s law.
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Representation Theorem

Thus far we have followed a usual engineering approach to
the constitutive formulation for linear elasticity.

The mathematical approach is via the representation theorem
for isotropic functions.

Assume now that the body is isotropic. Then o is an isotropic
function of € and, by the Representation Theorem for
Isotropic Linear Tensor Functions the only possible linear
relationship is that

o = 2uge + Altre

where u and A are called Lame’s material constants.
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Elastic Modulus

\

A more familiar expression is,
E vV

o = Ty 5+ Ty 60
With the inverse relation,

1+v vV
€ij =~ 0ij ~  OkkOij
On page 74 of Bower, you may find the relationships

among different pairs of constants that are in use.
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Elastic Modulus

‘\

Nd, if we include temperature-induced strains,
expression becomes,
E vV EaAT
T 0 T Ty ) Ty O
With the inverse relation,
1+v vV

Eij = I aij—Eakk(Sij+aAT6ij

O-ij =
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Physical Interpretation (Bower 75)

oung’s modulus E is the slope of the stress-s “ul
uniaxial tension. It has dimensions of stress Nmnd is usually
large for steel, E = 210 x 10°N /m?. You can think of E as a

measure of the stiffness of the solid. The larger the value of E,
the stiffer the solid. For a stable material, E > 0.

Poisson’s ratio v is the ratio of lateral to longitudinal strain in uniaxial tensile stress. It is
dimensionless and typically ranges from 0.2 — 0.49, and is around 0.3 for most metals. For a
stable material, —1 < v < 0.5. It is a measure of the compressibility of the solid. If v = 0.5, the
solid is incompressible its volume remains constant, no matter how it is deformed. If v = 0, then
stretching a specimen causes no lateral contraction. Some bizarre materials have v < 0 if you
stretch a round bar of such a material, the bar increases in diameter!!
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—

Thermal expansion coefficient quantifies the change in volume of a material if
It is heated in the absence of stress. It has dimensions of inverse degrees

Kelvin.°K~! and is usually very small. For steel, « ~ 6 —10 x 101K ~1
The bulk modulus quantifies the resistance of the solid to volume changes. It
has a large value (usually bigger than E).

The shear modulus quantifies its resistance to volume preserving shear
deformations. Its value is usually somewhat smaller than E.

Strain Energy Density for Isotropic Solids
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Work Done
.‘

Note the following observations

« |f you deform a block of material, you do work on it (or, in
some cases, it may do work on you...)

* In an elastic material, the work done during loading is
stored as recoverable strain energy in the solid. If you
unload the material, the specimen does work on you, and
when it reaches its initial configuration you come out even.

*  The work done to deform a specimen depends only on
the state of strain at the end of the test. Itis independent
of the history of loading.
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